
ANL-7818

^ T I O N OF HIERARCHIC TEXT

ITH A COMPUTER DISPLAY

iVilfred J. Hansen

UofC-AUA-USAEC«

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

The f a c i l i t i e s of A r g o n n e Na t iona l L a b o r a t o r y a r e owned by the Uni ted S t a t e s G o v e r n
m e n t . Unde r the t e r m s of a c o n t r a c t (W - 3 1 - 1 0 9 - E n g - 3 8) b e t w e e n the U. S. A t o m i c E n e r g y
C o m m i s s i o n , A r g o n n e U n i v e r s i t i e s A s s o c i a t i o n and The U n i v e r s i t y of Ch icago , the U n i v e r s i t y
e m p l o y s the staff and o p e r a t e s the L a b o r a t o r y in a c c o r d a n c e wi th p o l i c i e s and p r o g r a m s f o r m u
la ted , a p p r o v e d and r e v i e w e d by the A s s o c i a t i o n .

M E M B E R S O F ARGONNE UNIVERSITIES ASSOCIATION

The Univers i ty of Ar izona
Carneg ie -Mel lon Univers i ty
Case Wes t e rn R e s e r v e Univers i ty
The Unive r s i ty of Chicago
Univers i ty of Cincinnati
I l l inois Ins t i tu te of Technology
Univers i ty of I l l inois
Indiana Univers i ty
Iowa State Unive r s i ty
The Unive r s i ty of Iowa

Kansas State Univers i ty
The Univers i ty of Kansas
Loyola Univers i ty
Marquet te Univers i ty
Michigan State Univers i ty
The Univers i ty of Michigan
Univers i ty of Minnesota
Univers i ty of Mis sou r i
Nor thwes te rn Univers i ty
Univers i ty of Notre Dame

The Ohio State Univers i ty
Ohio Univers i ty
The Pennsylvania State Univers i ty
Purdue Univers i ty
Saint Louis Univers i ty
Southern Il l inois Univers i ty
The U n i v e r s i t y of T e x a s a t Aus t in
Wash ing ton U n i v e r s i t y
Wayne S ta te U n i v e r s i t y
The U n i v e r s i t y of W i s c o n s i n

NOTICE

This r e p o r t was p r e p a r e d a s an accoun t of w o r k s p o n s o r e d
by the Uni ted S ta t e s G o v e r n m e n t . N e i t h e r the Uni ted S t a t e s
n o r the United S t a t e s A t o m i c E n e r g y Connmiss ion , n o r any
of t h e i r e m p l o y e e s , n o r any of t h e i r c o n t r a c t o r s , s u b c o n t r a c
t o r s , or t h e i r e m p l o y e e s , nnakes any w a r r a n t y , e x p r e s s or
imp l i ed , or a s s u m e s any lega l l i ab i l i ty o r r e s p o n s i b i l i t y for
the a c c u r a c y , c o m p l e t e n e s s o r u se fu lne s s of any infornnat ion,
a p p a r a t u s , p r o d u c t or p r o c e s s d i s c l o s e d , o r r e p r e s e n t s tha t
i ts u s e would not inf r inge p r i v a t e l y - o w n e d r i g h t s .

P r i n t e d in the Uni ted S ta t e s of A m e r i c a
Ava i l ab le f r o m

Na t iona l T e c h n i c a l I n f o r m a t i o n S e r v i c e
U.S. D e p a r t m e n t of C o m m e r c e

5285 P o r t Royal Road
Spr ingf ie ld , V i r g i n i a 2Z151

P r i c e : P r i n t e d Copy $3.00; Mic ro f i che $0.95

ANL-7818
Mathematics and
Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

CREATION OF HIERARCHIC TEXT
WITH A COMPUTER DISPLAY

by

Wilfred J. Hansen

Applied Mathematics Division

June 1971

A Dissertation Submitted to the
Department of Computer Science

and the Committee of Graduate Studies
of Stanford University

for the Degree of
Doctor of Philosophy

i i

Preface

The work reported in this thesis originally began with a plan for

a flow chart language to create programs at a computer driven display

console. The user would select boxes and draw their interconnections.

Any box could be chosen from a set of primitives, or could be defined

by a lower level flow chart. As I gained experience first with Algol

and then other structured languages, I began to realize that flow

charts were unnecessary. The nested, or hierarchical, structure of

the program could be expressed in the typographical structure of the

program text. With well chosen comments, appropriate indentation, and

no labels, I found that I could write programs that were easily read

because the flow of control proceeded in a straightforward way from

the first line of text to the last.

Structured programs are possible in ALGOL because statements can

be grouped by BEGIN-END 'parentheses'. As a result, a single condi

tional statement can include a number of subordinate statements whose

execution depends on the condition. These subordinate statements can

include further conditional statements, so that the program has a

hierarchical structure. ALGOL is also hierarchic in the sense of

levels of structural units: programs include procedures include

statements include expressions include terms and so on. Both of these

types of hierarchy are emphasized in the ALGOL defining document by

the use of Backus-Naur Form (BNF) to describe the syntax.

Because of the simplicity and unity provided by BNF, I decided to

base a program text construction and manipulation system on generation

of a program by applying syntactic rules. A text includes certain

iii

replaceable symbols (called non-terminal symbols in the BNF notation).

For each of these the user selects a replacement from a set of choices

displayed by the system. These choices are generated from a syntactic

description of the programming language. Thus, rather than typing

strings of characters, the user creates a program by selection. The

entire system described below is based on the consequences and impli

cations of this simple idea.

The first chapter is entirely introductory; the concept of syntax

is not introduced until Chapter 2. Readers familiar with this concept

may wish to skim until they reach the section Emily Text Structure in

the second chapter. To assist such skimming, most of the introductory

information has been summarized in the illustrations and their captions.

I presented the Emily system at the Computer Graphics 1970 Con

ference (Hansen, 1970). That paper described the basic system and

proposed many advanced facilities that have now been implemented and

are described in Chapter 3. It also outlined plans for measuring how

useful the system was to the user. Unfortunately, there has not been

time to train a user community, let alone make measurements. The

details of Emily will be contained in three forthcoming reports: Emily

User's Manual, Emily Syntax Designer's Manual, and Emily System

Documentation.

The ideas in this thesis have a number of sources. Professor

Nlklaus Wirth introduced me to labelless programming and first expressed

the concerns that led to the hierarchical hypothesis. My first expo

sure to graphical text editing was the excellent TVEDIT system designed

by Brian L. Tolliver. I have learned a great deal from the work of

Dr. Douglas Engelbart. Above all, I am indebted to my advisors.

Professors John C. Reynolds and William F. Miller. By understanding

the implications of my explanations. Professor Reynolds sometimes knew

more about Emily than I did. Professor Miller provided continuous

encouragement; without his support the Emily system might never have

been planned.

A >ioiU.z of, ^vaneAczncz

With a Kzvotvlnq uthti:^.}

A luonance. o{, mM-oZd,

A KiUih o(i coahlmaZ;

And ZKjQAij bloiiom on thz biu,h

Adjtuti iti tumbled hzad, -

The ncLit fiom TuyuA, pKobciblij,

An ezuy moining'i, ildz.

Emily Dickinson

v l

TABLE OF CONTENTS

Page

Abstract ix

1. Introduction I

The Hierarchical Hypothesis 3
Other Text Manipulation Systems 8
The Appearance of Emily Text 9
The Emily System 11

2. Basic Text Creation and Display 15
Hierarchical Structure and Syntax 15
Emily Text Structure 19
Creating Text 23
Viewing Text 25

3. Additional Facilities 28
Text Display Facilities 28
Text Modification 32
Meta Facilities 37
Possible Future Emily Facilities 38

4. User Engineering Principles 42
Minimize Memorization 44
Optimize Operations 49
Engineer for Errors 53

5. Syntactic Formalism 59
Abstract and Concrete Syntax 59
Structure of the Formalism 61
Identifiers 64
Lists * 65
Display Format 67
Conditional Display 69
Evaluation of Syntactic Formalism 71

6. Observations and Conclusions 75
The Hierarchical Hypothesis and System Implementation 76
User Experience 81
Other Advantages and Disadvantages of Emily 90
Future Work with the Emily Concept 93

7. Summary 97

Appendixes;
A. Program Function Keyboard 101
B. Emily Syntactic Formalism 103
C. Emily Syntax for PL/I 108
D. PL/I Program Created with Emily 122

References 126

vii

LIST OF FIGURES

1.1 Path between User and File

1.2 Visualizations of a Hierarchy

1.3 Three Views of a Typical Hierarchy '•

1.4 IBM 2250 Graphic Display Unit ^^

2.1 Syntax Describing the Pattern Given in the Text •'•"

2.2 Portion of Syntax for PL/I ^^

2.3 Steps in the Generation of a DO Loop 20

2.4 Hierarchical Structure Imposed by Syntax 2•'•

2.5 Generation of a DO Loop with Emily 24

2.6 Examples of Holophrasts 26

3.1 Using COPY to Create Text 35

3.2 Example of a Data Structure Sketch ^1

4.1 Table of User Engineering Principles ^5

5.1 BNF Description of Emily Syntactic Formalism "3

6.1 Hierarchical Structure of Emily System 78

ompa 6.2 Comparison of Emily with a Linear Text Editor 82

6.3 Distribution of Emily Command Interactions 86

7.1 Advantages and Disadvantages of Emily 98

CREATION OF HIERARCHIC TEXT WITH A COMPUTER DISPLAY

by

Wilfred J. Hansen

Abstract

Paper and pencil, the traditional tools for creation of computer

programs, assist the programmer very little. Proper punctuation demands

precision, review of existing text requires clumsy paper shuffling, text

modification is difficult and messy. In conjunction with a file storage

device and a graphic display unit, a computer can provide a more flexi

ble medium, but early systems still treated the text as an unstructured

string of characters. Emily, the system described in this paper, avoids

these problems because text is created, viewed, and modified in terms

of the structure Imposed by the syntax of the programming language.

To describe languages for the Emily system, a syntactic formalism

was developed. Based on Backus-Naur Form, this formalism can describe

identifier block structure, indentation, and conditional display of text.

The user creates text by selecting among choices displayed by the system

under guidance of a language description in this formalism.

The interface between man and system was designed in accordance with

a set of user engineering principles, thirteen principles are discussed

under the headings of 'minimize memorization', 'optimize operations', and

'engineer for errors'.

Results of a rudimentary comparison with a system for unstructured

strings show that the user took slightly longer with Emily, but made

fewer mistakes.

1. Introduction

Good communication is vital in this age of rapid change. Man-man

communication is essential for basic human understanding; man-machine

communication is necessary to control our technology. Technology, in

turn, has contributed to better communication by providing more effec

tive intermediaries. Among these intermediaries are a number of

computer systems that help a user build and modify files of text. As

diagrammed in Figure 1.1, the user sits at a console and the file of

text is stored in one of the peripheral devices attached to the computer.

Later, the text is read and acted upon:

another user may read the text via the same interactive system,

the computer may be directed to read the text and act on the

instructions therein, or

the creator of the text may read it and revise it.

This thesis describes an experimental text manipulation program. Called

Emily, this program is used to create and manipulate texts that can be

described by formalized languages.

A language is formalized if the set of valid strings in that lan

guage is described by a notational mechanism sufficiently precise to

determine whether any given string is indeed written in the language.

The main consideration in this paper will be computer programming

languages that can be described by the Backus-Naur Form (BNF) notation

(Backus, 1959). While a text is being constructed according to the rules

of this notation, it contains certain replaceable symbols where the text

is incomplete. The notational definition of the language specifies a

.c^yy

USER DISPLAY
&

INPUT

->-

COMPUTER

-^

Figure 1.1. Path Between User and File

The user is working with information stored on the file. He views a portion of the

text on the display and gives instructions with two keyboards and a light pen.

relatively small set of possible replacements for each of these symbols.

Each replacement may itself include one or more of these replaceable

symbols, but eventually all must be replaced by completed text. For

example, the symbol <STMT> might be replaced by

DO <ARITHV> = <ARITHX> TO <ARITHX>;

' <STMT*>

END;

where the symbols in brackets are other replaceable symbols.

The key distinction between Emily and other text creation systems

is the manner in which the user creates text. With other systems, the

user types the text as a string of characters. With Emily, the user

selects replacements. For each replaceable symbol, Emily displays a

list of the valid replacem.ents and the user selects the one that builds

his text in the desired direction. One advantage of this approach is

that the user is prevented from making typographical errors like omitted

commas or unbalanced parentheses. However, the major advantage is that

the resulting text is hierarchical.

The Hierarchical Hypothesis

A hierarchy is a collection of objects organized in levels so that

each object (other than the topmost) is immediately subordinate to

exactly one object and all objects are superordinate to zero or more

other objects. In general, subordinate objects need not be ordered,

but the Emily system always displays hierarchies in a specific order.

In Emily, the 'objects' are pieces of text. The rules of the for

malized language specify an organization such that a piece of text is

superordinate to the several pieces of text of which it is composed.

For example, the text of a procedure contains the text of individual

statements.

Hierarchies are an important aid to thought because they are easily

visualized and help to localize analysis. Among the many possible

visualizations of hierarchies are those shown in Figure 1.2. Each of

these diagrams could be continued to any level of nesting, but in prac

tice this can become unwieldy. Instead, the diagram is broken off at

some level and nodes at that level are expanded further in separate

diagrams. In an ideal hierarchy, there are no Interactions among the

nodes subordinate to a given node. Consequently, the structure can be

studied piecemeal by studying each node and its immediate subnodes. The

name or other identification on each subnode should specify its contents,

so when a subnode is studied the reader need only verify that the sub-

node lives up to its name. Thereafter when he encounters a name, the

reader need not reexamine the corresponding node. Even though few hier

archies are ideally non-interactive, the imposition of hierarchical

structure is an aid to study and understanding. Once the exceptions

are explained, the bulk of the Information can readily be examined in

its hierarchical structure.

Central to the Emily project has been an assumption that can be

called the 'hierarchical hypothesis:'

People think in terms of hierarchies and systems
that manipulate hierarchies are better suited to
creative work than systems that treat information
as unstructured text.

a) tree

TcHORDATA j URTHROPODA J

—\ry —m—^
^ORGANIC j rCNORGANIC J

ur

b) nested areas

NATURAL WORLD

ANIMAL

TcHORDATA j •

[(ARTHROPODA) i

C VEGETABLE

MINERAL

(ORGANIC j

ONORGANICj

J

c) nested line segments

[CHORDATA

[ARTHROPODA

c
[_ ORGANIC

[INORGANIC

ANIMAL

VEGETABLE S-

MINERAL

NATURAL
WORLD

Figure 1.2. Visualizations of a Hierarchy

Each of these mental images of a hierarchy is convenient for a different
purpose. The Emily system displays hierarchies with the representation
shown in the next figure.

Though the 'people' referred to may not include all individuals, this

hypothesis does seem to be true for some. The author and a number of

other investigators have found a hierarchical approach valuable. For

instance, Wirth (1971) outlines the series of refinements an example

program undergoes as the programmer considers the algorithm at succes

sively deeper levels.

Many instances of hierarchies occur in computer science. The

fundamental relation between hierarchies and BNF language definition

will be explained in Chapter 2. In Algol and PL/I, procedures can be

nested to any level, as can statements and expressions. (Languages have

even been designed where procedures can be nested within expressions,

though the readability of the result is open to question.) The nesting

of procedures controls the influence of declarations. If an identifier

is redeclared within an inner procedure, references to the variable have

no effect on the variable with the same name in the outer procedure.

Data structures can also be hierarchical. In LISP (McCarthy, 1962),

each data element is a pair of pointers to two similar subordinate elements.

Similar structures can be constructed in PL/I with pointers and based

variables. As noted by R. Williams (1970), such structures are easier

to build and maintain than arbitrary collections of nodes connected at

random.

In addition to structural hierarchies, computer programs often

exhibit logical hierarchies. Sometimes referred to as 'modular pro

gramming , logical hierarchies are a style of programming where each

process is defined in terms of a number of primitive processes at a

lower level. These primitives are then defined in terms of a still lower

set of primitives. This division into hierarchies has several advantages.

Most modifications to system specifications require changes in only a

few routines. If a primitive has been dutifully called upon wherever its

function is required, a modification to that primitive can modify the

behavior of the entire system. Moreover, testing of hierarchic systems

is additive rather than multiplicative. Interactions between modules

are kept to a minimum so it is only necessary to test each path through

each module rather than all possible paths through the system.

The hierarchical hypothesis seems to explain the power of the label-

less programming discipline espoused by E. W. Dijkstra (1958a, b) and

others. This discipline requires the programmer to eschew labels and

GOTO's and control the flow of program execution with appropriate use

of IF-THEN-ELSE and DO-WHILE. (A theorem by Bbhm and Jacopini (1966)

guarantees that these two statement types are adequate.) Further, the

programmer must indent his text correctly so that text subordinate to

a conditional clause is indented from the statement containing that

clause. Such indentation is readily accomplished due to the absence

of labels, otherwise the subordination of text might not be as clear.

The rewards of this discipline are that the program is more likely

correct because conditions must be considered carefully and the program

text is more readable because the flow of control at execution time is

mirrored in the typographical structure of the text. With appropriate

comments, the text is sufficiently readable to supplant the traditional

'flow' chart. The general flow is represented by the least indented

lines, while detailed flow is shown by the lines in between.

7

The scope of the Emily project was to build a hierarchical text

system and to demonstrate the possibilities of this approach. A

complete test of the hypothesis would require extensive testing on a

large number of users over a period of time. However, implementation

of Emily has shown that such experimentation is justified because in

several areas the system has significant advantages over other text

editing systems.

Other Text Manipulation Systems

Many systems have been built for entering unstructured text into

a computer. Among the best of these are TVEDIT (McCarthy, 1967), QED

(Thompson, 1958), and Wylbur (Stanford, 1968). Further examples are

described in (Rice, 1970). Two interesting systems that prevent errors

in the created program are described in (Bratman, 1968) and (Cameron,

1967). James E. George has implemented two special purpose systems

that permit text creation by syntax controlled substitution (1967,

1958). These systems were influential in the author's design of

Emily.

In a visionary 1945 article in Atlantic Monthly, Vannevar Bush

described what he called a Memex (Bush, 1945). This device would

replace the desk as a scholar's workspace. Displays would present

articles he had entered in his files and a keyboard would let him

enter his own thoughts. Essential to the Memex was the provision for

entering notes and references at any point in a file. While reading,

references could be examined by pressing a button.

Two systems have been inspired by Bush's article. The Hypertext

system by Nelson and van Dam (Nelson, 1965; Carmody, 1968) permits the

user to annotate his text and to link one portion of text to another.

The text appears to the user as a network of interconnected blocks.

The other system, developed at the Stanford Research Institute's Center

for the Augmentation of Human Intellect, manipulates hierarchical text

(Engelbart, 1968). Operations for viewing hierarchies are an integral

part of the display mechanism. These two systems, in turn, provided

inspiration for the Emily system. But with these systems, the user

must type each character of his text; with Emily, the user creates

text by selecting among options displayed by the system. Furthermore,

the hierarchies created with Emily are not usually general hierarchies

like those in Engelbart's system; instead they are hierarchies with

various types of components depending on (and limited by) the language

in which the text is being created.

The Appearance of Emily Text

Once hierarchical text has been created with Emily, it can be viewed

with four operations—contraction, expansion, descent, and ascent. As

an illustration, several views of a typical hierarchy are shown in

Figure 1.3. Three dots represent one or more sub-hierarchies that are

present in the full hierarchy but not displayed in a particular view.

In 1.3b, some of the structure has been contracted into three dots. In

1.3c, the top of the view has descended into the structure. In this

latter view, the sub-hierarchies of UROCHORDA have been expanded one

a) One view of a typical hierarchy.

THE NATURAL WORLD
ANIMAL KINGDOM

CHORDATA
UROCHORDA

CEPHALOCHORDA

HEMICHORDATA

VERTEBRATA

ARTHROPODA

PLANT KINGDOM

MINERAL KINGDOM

b) View after contracting the sub-hierarchies of ANIMAL KINGDOM.

THE NATURAL WORLD

ANIMAL KINGDOM

PLANT KINGDOM

MINERAL KINGDOM

c) View after descent into a sub-hierarchy.

CHORDATA
UROCHORDA

ASCIDIACEA

THALIACEA

LARVACEA

Figure 1.3. Three Views of a Typical Hierarchy

Three dots represent one or more sub-hierarchies not visible in a view.
In (c) the last three dots represent the ARTHROPODA and other sub-
hierarchies of the animal kingdom. The three just above represent the
sub-hierarchies under LARVACEA. There are only three orders under
UROCHORDA so there are no dots for further sub-hierarchies.

10

level. The user of a system offering these powerful operations for

viewing hierarchies can observe a hierarchy at any level of detail

and can easily study the relationships between sub-hierarchies. In

a printed form of such a hierarchy, the upper levels of the structure

might be separated by many pages.

The user's understanding of the Emily system is facilitated by

the similarity of the expansion operation and text construction by

substitution. In both cases, where there was previously an indication

of information (undefined sub-hierarchy or three dots) the operation

makes information appear. When the display is contracted, the same

structural unit can be contracted as was inserted by the substitution.

Thus although there are separate operations to create and view text,

both operations appear to transform the text in the same way. In more

traditional text handling systems the user sees transformations affect

typographical units like characters, words, and lines. In the form of

information provided by Emily, the user sees the text expanding and

contracting by structural units.

The Emily System

Emily has been implemented for an IBM 2250 Graphic Display Unit,

model 3. The 2250—see Figure 1.4—can display lines and characters

on a 12" by 12" screen. The user can give commands to the system with

several devices:

light pen - The user indicates a particular part of the display

image to the program by pointing at it with the light pen.

11

Courtesy: IBM Corporation

Figure 1.4. IBM 2250 Graphic Display Unit

program function keyboard - There are thirty-two buttons. The

meaning of a button push is controlled by Emily.

alphanumeric keyboard - This is a standard typewriter keyboard,

but typed characters are entered in the display. The

computer only responds to entered information when a

special key is pushed.

At Argonne National Laboratory, where Emily has been implemented,

the 2250 is attached to an IBM 360 model 75. The 75 is under control

of the MVT version of OS/350. Unit record input/output is controlled

by ASP in an attached 360/50. The 360/75 has one million bytes of main

core and one million bytes of a Large Capacity Storage Unit.

The Emily system itself requires 60K bytes of main core (the maxi

mum permitted for a 2250 job at Argonne) and about 400K bytes of LCS.

Emily is written in PL/I (IBMUK, 1968) and uses the Graphic Subroutine

Package (IBM, 1968) to communicate with the 2250. Files for Emily are

stored on a 2314 disk pack. Emily is table driven and can manipulate

text in a large variety of formal languages. To date, tables have been

created for four languages: PL/I, GEDANKEN (Reynolds, 19 70), a simple

hierarchy language for writing thesis outlines, and a language for

creating syntax definitions.

The Emily system outlined above will be described in the second and

third chapters. Chapter 4 details the Emily design philosophy. These

'User Engineering Principles' should govern the design of any inter

active system. The user must be given power to solve his problem, but

the operations available must be logically organized so they can be

13

readily remembered or deduced from simple principles. The fifth chapter

describes the formalism used within Emily to describe languages. Though

similar to BNF, this formalism includes codes to format the text and

provide context dependent punctuation. Some observations concerning the

hierarchical hypothesis and other experience with Emily are in Chapter 5.

14

2. Basic Text Creation and Display

Before describing how an Emily user creates text, this chapter

will show that (1) a hierarchy can be described by a syntax, and (2) a

syntax imposes a hierarchical structure on text. The computer applica

tions of formal syntax began with the use of BNF to describe Algol

(Backus, 1959). In most systems based on BNF, a syntax describes the

language and a programmer writes a linear string of characters that is

supposed to satisfy that description. The compiler for the language

then dissects this string to determine how it matches the syntax. The

resulting structural information enables the compiler to 'understand'

the programmer's Intentions. But if the string does not meet the syntax

(missing comma, perhaps), the compiler must signal an error. The Emily

system avoids such errors because the text is created according to the

syntax from the start.

Hierarchical Structure and Syntax ,

A text representation of a hierarchy is constructed according to a

simply defined pattern. For example, the structure of the hierarchy in

Figure 1.3 can be defined as follows:

(1) A title is a string of characters.

(2) A section can be a single title.

(3) A section can also be a title followed by a sequence of sections

indented from the title.

(4) A hierarchy is a section.

This pattern can be described by what is known as a syntax. Correspond

ing to the above pattern is the syntax shown in Figure 2.1. Symbols

15

<TITLE> IS A STRING (1)

<SECTI0N> ::= <TITLE> (2)

|<TITLE>{start indentation}<SFCTION*> (3)

<SECTION*> ::= {new Ilne)<SECTION><SECTION*> (3a)

I (3b)

<HIERARCHY> ::= <SECTION> (4)

Figure 2.1. Syntax Describing the Pattern Given in the Text

The numbers at the right correspond to rule numbers in the
text. This syntax is the BNF description of the structure of
the hierarchy in Figure 1.3.

16

that can be replaced by strings begin with '<', end with '>' and contain

a name that usually has some relation to the meaning of the string

generated by replacing the symbol. These symbols are called 'non

terminal' symbols because they must be replaced before the text is

complete. Possible replacements are specified by the rules of the

syntax: the strings following '::='. Alternate replacements for a

non-terminal are separated by '|'. In 2.1, rule (1) specifies that

the non-terminal <TITLE> must be replaced by a string of text. Rule

(3) specifies one possible replacement for <SECTION>. After this replace

ment there are two non-terminals in the text instead of one. Rule (3a)

shows how to generate a list of <SECTION>'s and (3b) shows how to end

the list. The effect of the latter rule is to delete <SECTION*> from

the text.

To be more precise, a BNF definition for a formal language has three

parts—a set of terminal symbols, a set of non-terminal symbols, and a

set of syntactic rules. The terminal symbols are those characters and

strings of characters (punctuation, reserved words, identifiers, con

stants) that can be part of the completed text. The non-terminal

symbols are a specific set of symbols introduced only to help describe

the structure of the formal language. Every non-terminal symbol must

be replaced by terminal symbols before the entire text is complete, but

the only allowable replacements for a given non-terminal are specified

by the syntactic rules. In each rule, the given non-terminal is on the

left followed by '::=' followed by the sequence of symbols that may

replace the non-terminal. As an example. Figure 2.2 shows a portion of

17

1 <STMT> ::= DO <ARITHV> = <ARITHX> TO <ARITHX>;

<STMT*> END;

2 I <ASGN STMT>

3 <STMT*> ::= <STMT>

4 <ASGN STMT> ::= <ARITH> = <ARITHX>;

5 <ARITHX> ::= <ARITH>

6 I <ARITHV>

7 I <NUMBER>

8 I <ARITHX> + <ARITHX>

9 <ARITHX*> ::= <ARITHX>

10 <ARITHV> ::= <ARITH>

11 I <ARITH> (<ARITHX*>)

12 <ARITH> IS AN IDENTIFIER

13 <NUMBER> IS A CONSTANT

Figure 2.2. Portion of Syntax for PL/I

Each rule specifies a possible replacement for the
non-terminal on the left. Rules 12 and 13 specify
special classes of terminal symbols ; the user can
enter replacements for these symbols from the
keyboard.

18

the syntax for PL/I. Figure 2.3 shows the steps in the generation of

a DO loop according to this syntax.

Note now that a string generated according to a syntax is not

simply a sequence of characters, but can be divided into hierarchies

of substrings on the basis of the syntactic rules. Each non-terminal

in the sequence of symbols for a rule generates a sub-sequence. The

DO statement in Figure 2.3 can be one of a sequence of statements in

some higher DO loop and can also contain a subordinate sequence of state

ments (generated by <STMT*>). A convenient visualization of the

hierarchy imposed by a syntax is the tree representation in Figure 1.2a.

Replacement of a non-terminal by a rule can be thought of as replacing

the non-terminal with a pointer to a copy of the rule. The structure

for the string in Figure 2.3 can be diagrammed as shown in Figure 2.4.

Each syntactic rule used in the generation of the string is represented

by a node (a rectangle). The node contains one pointer to a subordinate

node for each non-terminal in the syntactic rule. The subordinate node

is called a subnode or a descendant, while the pointing node is called

the parent.

Emily Text Structure

Text in the Emily system is stored in a file, which may contain any

number of fragments. Each fragment has a name and contains a piece of

text generated by some non-terminal symbol. Generated text is physically

stored in a hierarchical structure like that in Figure 2.4. Each node

is a section of memory containing (a) the number of the syntax rule for

which this node was generated, and (b) one pointer to each subnode. In

19

1<STMT>|

DO [<ARITHV>| = <ARITHX> TO <ARITHX>

<STMT*>

END;

10

DO I<ARITH>I = <ARITHX> TO <ARITHX>;

<STMT*>

END;

12

DO I = r<ARITHX>I TO <ARITHX>; '

<STMT*>

END;

. . . 13,7,13,3,2

DO I = 1 TO 20; *

[<ASGN STMT>|

END;

12,8,5,12,5,11,
12,9,5,12

DO I = 1 TO 20;

S = S + A(I);

END;

Figure 2.3. Steps in the Generation of a DO loop

In each step, the non-terminal in the rectangle is
replaced according to the rule whose number appears
at the right.

20

1 DO <ARITHV> = <ARITHX> TO <ARITHX>; <STMT*> END;

10 <ARITH>

7 <NUMBER>

\̂
1

<NUMBER>

20 <STMT>

2 <ASGN STMT>

<ARITH> = <ARITHX>;

<ARITHX> + <ARITHX>

<ARITH> <ARITHV>

11 <ARITH>(<ARITHX*>)

I
9 <ARITHX>

\
5

1

<ARITH>

_i ^
I

Figure 2.4. Hierarchical Structure Imposed by Syntax

This is a structure diagram of the DO loop generated in Figure 2.3. It
is also a diagram of the Emily data structure to represent this text.

21

a completed text, there is one descendant node for each non-terminal

in the syntax rule and the pointer to a descendant is the address of

the section of memory where it is stored. If no text has been generated

for a non-terminal symbol, there is no subnode and the space for the

pointer is occupied by a code representing the non-terminal symbol.

If a subnode of a node is an identifier, the pointer points at a copy

of the identifier in a special area. All pointers at a given identifier

point to the same copy in this identifier area. Except for identifiers,

each node is pointed at exactly once within the text structure. This

guarantees that if a node is modified, only one piece of text is affected.

Identifiers are handled specially in several ways in order to pro

vide facilities mirroring the PL/I and Algol treatment of identifiers.

All appearances of a given identifier are chained together by pointers.

Based on special codes in the syntax, these appearances are separated

between declarations and references. Also based on the syntax, the

system maintains a data structure representing the (Algol and PL/I)

block structure of the text. The facilities available to the user

because of this identifier information are described in Chapter 3.

Notice that punctuation and reserved words do not appear in this

representation of text. Instead, they can be generated because the

syntax rule number identifies the appropriate rule. Two tables—described

further in Chapter 5—control the structure and display of text. The

important point to note here is that the text is displayed as a string

of characters, even though it is stored internally as a hierarchical

structure.

22

Creating Text

The Emily user creates hierarchical text in a series of steps

very similar to Figure 2.3. In each step the right side of a rule is

substituted for a non-terminal symbol. Before the user creates any

text, the fragment contains a single non-terminal symbol. In the case

of Figure 2.3, that symbol is <STMT>. The user sees the result of each

step on the 2250 display.

The Emily system divides the 2250 screen into three areas: text,

menu, and message. The text area occupies the upper two-thirds of the

screen and displays some view of the text the user is creating. The

lower third of the screen is the menu where Emily displays the strings

the user can substitute in the text. The bottom line of the screen is

the message area, where Emily requests operands and displays status

and error messages.

Non-terminal symbols in the text area are underlined to make

them stand out. One of the non-terminals is the current non-terminal

and is surrounded by a rectangle. The menu normally displays all

strings that can be substituted for the current non-terminal. These

strings are simply the right sides of the syntax rules that have the

current non-terminal on the left. Figure 2.5 illustrates the Emily

screen layout with the steps from Figure 2.3. The choices in the menu

reflect the full PL/I syntax, as given in Appendix C.

When it is displayed, a non-terminal is the end (or terminal) of a
branch of the hierarchical structure. It is called a non-terminal
because it must be replaced with a string of terminals before the
text is complete.

23

' * <conttCNT> • /
OSCN STHT>

SO; <StnT(> END,
90 <»«•> = < i r t» SPE
IF (HTlO TMEN<ST1t>

*LLaC»'E <»LL0C I T (B
(I /O JTF1I>

loir iHC riLE TEiT

/» <connENi> • '
DECLARE <DECL E1. I>

DO •niLE l (» I H > l . < .
00 t»»nBv> = <i»itM -^
IF tl lTX> In(N<^I«t>
»ETu*N |<E>P>I.
»»E(<*»EE l IE t Io

Fa*e EiknoLE

- kfBllHIU ID ...ITM...

Figure 2.5. Generation of a DO Loop with Emily

These photographs show the same steps as shown in Figure 2.3. The menu displays all the choices available
in the implemented PL/I syntax. An arrow indicates the syntax rule the user will select next. Up to
twenty-two lines of text may be shown In the text area, so it appears empty with only 3 lines.

When the user points the light pen at an item in the menu Emily

substitutes that item for the current non-terminal. Usually, the

substitution string contains more than one non-terminal and the new

current non-terminal is the first of these. The user can also change

the current non-terminal by pointing the light pen at any non-terminal

in the display. Emily moves the rectangle to that non-terminal and

changes the menu accordingly. When the current non-terminal is an

identifier, the menu displays identifiers previously entered in the

required class (some of the classes for PL/I are <ARITH>, <CHAR>, and

<ENTRYNM>). The user may select one of these, or he may enter a new

identifier from the keyboard. Constants are also entered from the

keyboard. There are no special provisions for comments. If they are

to be allowed in the text, they must be described in the syntax as

constants.

Viewing Text

In the first chapter, contracted portions of a hierarchy were

represented by three dots (Figure 1.3). To assist the user, the Emily

system represents contracted information with a symbol called a holo-

phvast. This symbol begins and ends with an exclamation mark and

contains two parts separated by a colon. The first part is the non

terminal symbol that generated the sub-structure and the second part

is the first few characters of the contracted string. Figure 2.6

details this structure and shows examples of holophrasts. It is

Important to note that contraction to a holophrast only changes the

view of the file, it does not modify the file itself. Moreover, the

25

^Punctuation^

I I I
!STMT:DO I = !

non-terminal

first £ characters
of substring

DO I = 1 TO 20;

!STMT:S = S +!

END

DO I = 1 TO 20;

S = !ARITHX:S + A(I!;

END;

Figure 2.6. Examples of Holophrasts

All three examples show the DO loop, but each has been contracted
differently. The user may change ii, the number of characters of
the substring. In the examples, n is seven.

26

user never types a holophrast; they are displayed only as a result of

contraction in the hierarchy.

The user contracts a structural unit in the display by pushing a

button on the program function keyboard and then pointing at some

character in the text. A holophrast replaces that character and all

other characters generated by the non-terminal that generated the

selected character. For example, in the DO loop, the plus sign is

generated by the node for rule 8. If the user contracts the text by

pointing at that plus sign, the result is the third example in Figure

2.6. When text is contracted by pointing at a holophrast, the father

of the indicated node contracts to a new holophrast. Text characters

are the only characters displayed in the second part of this new holo

phrast. No holophrast ever contains the exclamation marks or other

parts of a subordinate holophrast. To expand a holophrast back to a

string, the user returns to normal text construction mode and points

the light pen at the holophrast.

The operations to ascend and descend in the text hierarchy are

also invoked by program function buttons. To descend in the hierarchy

the user pushes the IN button and points at a part of the text. The

selected node becomes the new display generating node; subsequent

displays show only this node and its subnodes. The OUT button lets

the user choose among the ancestors of the display generating node and

then makes the selected ancestor the new display generator.

27

3. Additional Facilities

The simple system described in the preceding chapter was imple

mented and illustrated the concepts of hierarchy viewing and syntax-

controlled text creation. But the inconvenience of this system obscured

the potential value of these concepts. For example, if he made a mis

take, the user had to reinitialize the file and reconstruct the whole

text. To remedy such problems, a text manipulation system was constructed

around the basic system. Although some of its features were straight

forward adaptations of features in other systems, the complete system

was a non-trivial task; it took eight months beyond the four months

required for the basic system. This additional work was important

because the goal of this project was not only to demonstrate a text

creation concept, but also to build a practical tool.

The facilities described below are, in general, called into opera

tion by pushing one of the thirty-two buttons on the program function

keyboard. In the descriptions, capitalized names are those that appear

over keys on the keyboard overlay (see Appendix A). The descriptions

below are divided between text display, text modification, and meta-

facuities. The chapter closes with a discussion of two facilities

that can be added because Emily text is hierarchically structured.

Text Display Facilities

If an interactive system is the user's primary contact with his

information, it must provide a rich variety of mechanisms to view text

and locate lower level parts of the structure. There must be some

28

compensation for the fact that the display size is less than a full

page of text. Emily compensates by automatically formatting the dis

play of the text and by providing three means of locating text.

Text displayed by Emily is formatted under control of codes in

the syntax tables (see Chapter 5). The user need not—and cannot—

insert format control codes in his text. As a result, the system can

always properly format text even when the perspective is changed. If

low level text is displayed alone, it is indented less and has fewer

overflow lines than if it were displayed as part of its parent text.

Another result of automatic text formatting is that after a user has

learned the format conventions, they help him understand the structure

of the text. At the statement level, subordinate text is always indented

from its parent. Examples of automatically formatted text are in Figure

2.5 and the appendices.

When viewing a previously created file, the most common operation

is holophrast expansion. As described in Chapter 2 and as initially

implemented, pointing the light pen at a holophrast caused it to expand

one level so that each of its subnodes was a holophrast. While this

is theoretically sufficient to observe any view of the file, it proved

tedious in practice. Hence, an 'expansion depth' parameter was imple

mented to control the number of levels that a holophrast is expanded.

Normally this parameter is set rather high (21) so that the entire sub

tree will usually be expanded. But three buttons control the expansion

depth for specific purposes. The user can set the depth to one in order

to view the immediate subnodes of a holophrast.

29

A user sometimes wishes to save his place, view some remote text,

and return to the original view. To satisfy this user, the Emily

system provides display status saving and restoring. The current

status of the display can be either stacked or named. In the first

option, one button saves the current display on a stack. A second

button restores the display status from the top of the stack. Thus

the user can travel over the file noting places he wishes to return to

and can return simply by pushing a button. The second save-display

option is to name the current display. The user pushes the SAVE button

and types a name: the RESTORE button displays all names so the user can

select the view he wishes next.

A display status is stored as a pointer at the node that generated

the display together with some information to partially restore the

display to what it looked like. Attempts to preserve the complete

display status meet two problems. First, it is necessary to note

exactly which nodes are displayed as holophrasts: and second, the text

in the saved display might be modified. Detailed holophrast information

could be saved in a bit vector with one bit for each node in the order

encountered. However, modification of the text could destroy the rela

tion between nodes and bits. The implemented system avoids these

problems by saving only a single number. This number is an expansion

factor computed by scanning down the tree level by level until the

first holophrast is encountered. When the display is restored no sub

tree is expanded beyond this level. Usually then, the user must manually

expand some parts of a restored display. Two other problems were avoided

30

by careful Implementation. If the display generating node or one of

its supernodes is moved, the display status still points to the node

and when restored will restore the display from wherever the text is

located. If the generating node for a display status (or some node

above it) is deleted, the display status is also deleted.

A user cannot assign a name to every view he might want to see.

On occasion he would like to view those parts of his text containing

some specified piece of text. The most general approach to this prob

lem would be to provide a tree search mechanism to find subtrees

meeting some description. Though this facility could be added, Emily

does not have it. Instead, an 'interactive cross-reference facility'

lets the user view all Instances of any identifier. A complete des

cription of this facility would require definitions of 'block',

'declaration', and several other terms. Since these definitions are

lengthy, they are omitted and the interactive cross-reference facility

is only sketched in this paper. The Emily User's Manual contains a

complete description.

The interactive cross-reference facility is invoked by the user

with several buttons. One lets the user select as 'current' an identi

fier and one of its declarations. Each time a second button is pushed,

an instance of the current identifier is displayed. This display is

generated by locating the instance and then moving up the structure

three levels. (The number of levels can be changed during a console

session to display greater or less context.) Buttons are also provided

to let the user see the declaration of any identifier or the block

31

controlling any subblock. In addition to these commands, the stored

identifier information controls the choices presented in the menu when

the current non-terminal is an identifier. If the non-terminal is a

declaration instance, the choice is among all undeclared identifiers

in the block or any subblock. Otherwise, the choice is among all identi

fiers declared in the current block or outer blocks.

Text Modification

As an inevitable by-product of viewing his text, the user will want

to modify it. In the earliest version of Emily, the user could delete a

holophrast. This changed the holophrast into a non-terminal and saved

the deleted structure in a 'dump'. A second button let the user substi

tute the contents of the dump for the current non-terminal. With this

mechanism any text changes can be made. For example, the most common

error, especially when copying a routine from paper, is to leave out

an operator. The user might input F00(3) where he wanted F00(3)+X.

This change can be made in five steps;

1) contract F00(3) to !EXP: F00(3)!

2) delete the holophrast to get |<EXP>|.

<EXP> is now the current non-terminal and substitutions for

it are displayed in the menu.

3) select for <EXP> the rule

<EXP> + <EXP>

4) substitute the dump for the first <EXP> to get

F00(3) + <EXP> •

5) proceed normally to replace <EXP> with X.

32

This technique is satisfactory if only one holophrast is involved.

But in order to swap two holophrasts, the user would have to temporarily

move one of the holophrasts to another non-terminal in the text. To

avoid this problem and to provide flexibility in program creation,

named fragments were introduced along with the operations of moving and

copying subtrees.

A fragment name is an identifier in a special class. Associated

with the name is the fragment itself—a subtree of nodes together with

an indication of the syntax and non-terminal that generated the sub

tree. The main text for the file is in a fragment called *MAIN TEXT*.

To choose a fragment to work on, the user pushes the EDITFR button-

Emily displays the names of existing fragments, the user selects one,

and Emily displays the contents of the fragment. The user may then

view, add to, or modify the fragment with all the Emily text facilities.

The distinction between fragments and display statuses is part of a

deliberate separation of text modification and display modification.

A fragment is a complete unit of text by itself; it can be deleted,

moved, or copied without being displayed. A display status contains a

pointer into the text generated by some fragment. To modify the dis

play status would inadvertently modify the fragment. After the user

calls a display status to the screen, he can modify the text but he

is modifying the text as part of a fragment and the name of that frag

ment appears in the message area.

The major text modification functions in Emily are invoked with

the MOVE and COPY buttons. After pressing one of these, the user is

33

asked to light pen the item he wishes to move or copy. He may select

a holophrast, an identifier, a constant, or a non-terminal. He may

also select a fragment from the menu which displays the names of

existing fragments. The item selected is then moved or copied to the

fragment with the name *DUMP*. MOVE changes the source item back to

a non-terminal, so this button can be used to delete unwanted text.

As the next step, both MOVE and COPY ask the user to select a destina

tion for the fragment now in *DUMP*. He may move it to another fragment

or back into the text portion of the display.

The item the user initiallv selects to MOVE or COPY may be any

item in the display except a terminal symbol appearing directly in a

syntax rule (such as punctuation and keywords). The reason is that

such characters are only part of a node, and the whole node may generate

many characters. If allowed to MOVE or COPY by pointing at terminals,

the user might inadvertently modify more than he wanted. The user can

move a node generating a terminal symbol by contracting the node to a

holophrast and moving or copying the holophrast.

An example of one use of COPY is shown in Figure 3.1. The fragment

TEXT (see Appendix D) was created by first creating the fragment TEMP

and then copying it three times. Finally, the <CHAR STR>'s and <NUMBER>'s

were filled in appropriately. Though the user must be experienced with

Emily before he takes advantage of such possibilities, this example

demonstrates text manipulation that cannot easily be accomplished with

paper and pencil.

34

Fragment TEMP

IF TC < '<CHAR STR>' THEN
CHAINN0 = 1;

ELSE IF TC -•> '<CHAR STR>' THEN
CHAINN0 = <NUMBER> + UNSPEC (TC) - UNSPEC ('<CHAR STR>');

ELSE <STMT>

Fragment TEXT

IF TC < 'A' THEN
CHAINN0 = 1;

ELSE IF TC ->> 'I' THEN
CHAINN0 = 2 + UNSPEC (TC) - UNSPEC ('A');

ELSE IF TC < 'J' THEN
CHAINN0 = 1;

ELSE IF TC -•> 'R' THEN
CHAINN0 = 11 + UNSPEC (TC) - UNSPEC ('J');

ELSE IF TC < 'S' THEN
CHAINN0 = 1;

ELSE IF TC -•> 'Z' THEN
CHAINN0 = 20 + UNSPEC (TC) - UNSPEC ('S');

ELSE <STMT>

Figure 3.1. Using COPY to Create Text

Both fragments were created from the non-terminal
<STMT>. TEMP was created first and copied to TEXT.
Then TEMP was copied twice to the final <STMT> in
TEXT and the <CHAR STR>'s and <NUMBER>'s were
replaced by keyboard entry.

35

A further facility for text modification is provided by operations

on lists. A list is a sequence of elements each generated by the same

non-terminal symbol. Non-terminals that can be replaced by lists end

with an asterisk; for Instance, the non-terminal for a list of state

ments is <STMT*>. When a list is the current non-terminal, the menu

displays options reflecting both the list and the syntax rules for the

list-item (e.g. <STMT>). These options provide for continuing or ter

minating the list while inserting one of the choices for the list-item

as an element of the list. For example, to replace |<STMT*>| the menu

offers both <ASGN STMT> and <ASGN STMT><STMT*>. In Figure 2.3 each

of the two list replacements (<STMT*> ^ <ASGN STMT> and <ARITH*> ->

<ARITH>) can be done with a single light pen selection. This reduces

the user's interaction time because he can select two rules at once

(3-2 and 9-5). Usually the first non-terminal in the inserted choice

becomes the new current non-terminal. But there is a special option

that inserts the list-item as an element and leaves the list as the

current non-terminal. In this case, |<STMT*>| becomes <STMT>|<STMT*> | .

The user thus has the choice of creating the list one element at a time

or creating a list of non-terminals and going back to fill them in.

An especially useful feature of lists is that INAFT and DELEL are

provided to insert and delete elements. To insert an element, the

user pushes INAFT and selects with the light pen the character just

before the desired insertion point. If more than one list can have an

insertion at that point, the user is asked to resolve the ambiguity by

choosing among the non-terminal symbols that generate each of the

36

possible lists. List element deletion is non-ambiguous, but subnodes

must be contracted to a holophrast before they can be deleted. Like a

substructure MOVE'd or COPY'd, a deleted list element is moved to *DUMP*.

Meta Facilities

A meta facility is any facility not directly involved in text con

struction and manipulation. One Emily meta-facillty is a provision to

extend the utility of the program function keyboard. The 2250 provides

a light pen and an alphameric keyboard in addition to the program func

tion keyboard. Since few people have three hands, users must shift

from device to device during a console session. As an experiment to

avoid this problem and to speed up interaction, program modifications

were made so the function keyboard could be used for menu selection and

text entry as well as its usual uses. The PFKBMENU, ALPHA SHIFT, and

NUM SHIFT buttons set the function keyboard in modes to enter menu

selections, letters, and numerals, respectively. This experiment has

been unsuccessful so far because the buttons are harder to push than

the alphameric keys and because they are arranged so the user must look

at them to find the key he wants. Thus this use of the function key

board distracts the user from the text he is trying to create.

Other Emily meta-facilities enable the user to manipulate files

and process entire fragments. These facilities are provided by a moni

tor routine invoked with the MONITOR button. With the monitor the

user can Initialize a file and copy one file to another. He may also

save the file he is working on and switch to some other file. When he

37

submits the deck to invoke Emily, the user must include an OS/360 DD

card for each file he might want to access. The monitor lets the user

choose among these files by displaying whatever names the user has put

on the DD cards.

Another monitor facility is a syntax processor that creates

syntax tables to control Emily text generation and display. Because

the internal coded form of these tables is tedious to generate by hand,

the syntactic formalism described in Chapter 5 was designed. Syntax

definitions in this formalism are created and modified as Emily texts,

then the syntax processor is invoked to convert the definition into

syntax tables. Other monitor facilities permit the user to load the

new tables and create text in the newly designed syntax.

Fragments can also be printed or punched with the monitor. Printed

text is formatted by the same routine that generates the 2250 display,

but special caution is taken to avoid excessive indentation. When

text would be indented beyond the middle of the page, an extra blank

line is printed and the text is brought out to the left margin. Text

printed by the system is shown in appendices B, C, and D.

Possible Future Emily Facilities

When text is stored within a computer, programs can be written to

process the text and produce desired output. One such program is the

Emily syntax processor. Considerable time was saved in the design

and implementation of this processor because the text was structured

and the existing text access routines could be used. This same fact

opens the possibility that routines can be written to modify text.

38

A text manipulation language can be designed so that an Emily user can

write routines to modify his text. To make equality relative, for

instance, the user could write a routine to replace all Instances of

2£=2 with EQUALS(x,X.EPSILON), where x and ̂ represent arbitrary text

structures.

Routines in the text manipulation language can be executed on

request as in the example, but they can also be executed when a

specified type of node is created or displayed. Several problems in

the PL/I syntax could be solved by allowing a subroutine call when

specific node types were created. Attributes in declarations could

be checked for consistency. After a procedure call had been entered,

a routine could check the procedure declaration and create an argu

ment list with non-terminal symbols appropriate for the type of each

argument. If a routine could be called when a node were displayed,

other problems could be solved. PL/I qualified identifiers could be

displayed with only enough qualification to render the reference

unambiguous. In outline texts, section numbers could be supplied

based on the position of the section in the hierarchy.

Two facilities of value to users could be added to Emily by taking

advantage of the graphical display capabilities of the 2250. (This

has been avoided in an effort to be compatible with text-only display

devices.) First, it is possible to display nodes as blocks with inter

connections shown by arrows. This might appear similar to Figure 2.4.

Construction of such a mechanism presents interesting problems of

formatting a graph structure for display. To be readable, the nodes

of the tree would have to be placed so that interconnecting lines were

39

reasonably short and direct. Once such a mechanism were in Emily,

the system could also provide a second facility—'margins' for the

user to draw data structure diagrams. With blocks and lines, the

Emily user could build sample diagrams of the interconnections of

his data structure. While Implementing Emily, the author frequently

sketched structures in the margin of the coding forms. The display

screen would be more flexible, and the resulting diagrams could become

part of the documentation of the program. Figure 3.2 shows a possible

sketch of part of the Emily data structure. In addition with access

to the data structure declarations, Emily could assist in the creation

of structure diagrams. For block names, the names of all based struc

tures would be displayed in the menu; for line names, Emily would

display the POINTER variables in the based structure. The possi

bility of such assistance is one more illustration of the value of

structured text as used in Emily.

40

(fragment name)

^ IDND $

IDVAL

M-

FRAGND

BLKLOC

(fragment
contents)

FRND
$ IDND ^

FRBLK

-UL

BLKND

BLKIDS

DIRBLK

REFBACK

-^

IDREF

DIRND

DIRID

DIRREF

JL

REFND

~1

REFDIR

REFLOC

DIRDCL
DIRBNXT
DIRNXT

REFNXT

Figure 3.2. Example of a Data Structure Sketch

The proposed structure sketching facility would make possible
construction of diagrams like this. The squares represent based
structures declared in the text: labeled arrows are pointer
variables in those structures. Emily would interpret the user's
file to present options of based structure and pointer names. A
pointer at an empty list is indicated by —2_ . The structure shown

happens to be the Emily data structure created when the contents of
a fragment is an identifier.

41

4. User Engineering Principles

The design of the Emily facilities was guided by a set of 'User

Engineering Principles.' Observation of, and experience with, many

other interactive systems led to the author's awareness of these prin

ciples. The Emily project provided an opportunity to codifv them and

write them down. The goal of User Engineering is to design systems

that provide the maximum possible assistance to the user. The user,

after all, is the man who has to 'live with' the system.

Disciplines similar to user engineering have been called human

engineering, human factors, and ergonomics, but these terms most often

refer to analog systems like airplane cockpits where the pilot guides

a process. User engineering applies to digital systems where the goal

is to store or retrieve information. D. Engelbart (1971) has used

'User Feature Design' to refer to these same principles. His point

is that this term emphasizes that the features are being designed for

the user rather than the other way around. In fact, though, any inter

active system will require retraining of the users and some systems—

like Emily—may require the user to alter thinking habits of many years

standing. But let there be no mistake, the author is deeply committed

to a policy of modifying the system to fit the user. Other sets of

user engineering principles have been reported by L. B. Smith (1969)

and J. G. Mitchell (1970). Their suggestions are compatible with those

below, but less comprehensive. The reader should also read R. B. Miller's

paper (1968) in which he attempts to estimate a maximum permissible

response time in seventeen interactive contexts.

42

One restriction on a few of the principles below is that they apply

to systems with display devices for output. This is essential, because

a basic principle is that the system respond to the user as fast as

possible. A visual display can present more information in less time

than available hardcopy devices. The 'economy' of the terminal device

must be weighed against the cost of attention-wander-time as the user

interacts with the system. Other than the terminal, cost is not a

problem in the application of these user engineering principles. In

general, they dictate features that are inexpensive to design into a

system. They are, however, often expensive to include after implementa

tion is underway.

The first principle is Know the user. The system designer should

try to build a profile of the intended user: his education, experience,

interests, how much time he has, his manual dexterity, the special

requirements of his problem, his reaction to the behavior of the system,

his patience. One function of such a profile is to help make specific

design decisions, but the designer must be wary of assuming too much.

Improper automatic actions can be an annoying system feature.

A more important function of the first principle is to remind the

designer that the user is a human. He is someone to whom the designer

should be considerate and for whom the designer should expend effort to

provide conveniences. Furthermore, the designer must remember that

human users share two common traits; they forget and they make mis

takes. With any interactive system problems will arise—whether the

user is a high school girl entering orders or a company president asking

for a sales breakdown. The user will forget how to do what he wants,

43

what his files contain, and even—if interrupted—what he wanted to do.

Good system design must consider such foibles and try to limit their

consequences. The Emily design tried to limit these consequences by

explicitly including a fallible memory and a capacity for errors in

the intended user profile. Other characteristics assumed are:

curious to learn to use a new tool,

skilled at breaking a problem into sub-problems,

familiar with the concept of syntax and the general features
of the syntax for the language he is using,

manually dextrous enough to use the light pen,

not necessarily good at typing.

Specific user engineering principles to help meet the first princi

ple can be categorized into

minimize memorization,

optimize operations,

engineer for errors.

The principles are outlined in Figure 4.1.

Minimize Memorization

Because the user forgets, the computer memorv must augment his

memory. One important way this can be accomplished is by observing

the principle selection not entry. Rather than type a character string

or operation name, the user should select the appropriate item from a

list displayed by the computer. In a sense, the entire Emily system

is based on this principle. The user selects syntax rules from the

44

User Engineering Principles

First principle: Know the user

Minimize Memorization

Selection not entry

Names not numbers

Predictable behavior

Access to system information

Optimize Operations

Rapid execution of common operations

Display inertia

Muscle memory

Reorganize command parameters

Engineer for Errors

Good error messages

Engineer out the common errors

Reversible actions

Redundancy •

Data structure integrity

Figure 4.1. Table of User Engineering Principles

45

menu and never types text. Even when an identifier is to be entered,

Emily displays previously entered identifiers- though the user must type

in new identifiers. Because the system is presenting choices the

user need not remember the exact syntax of statements in the language,

nor the spelling of identifiers he has declared. Moreover, each selec

tion—a single action by the user—adds many characters to the text.

Thus if the system can keep up with the user, he can build his text

more quickly than by keyboard entry.

The principle of 'selection not entry' is central to computer

graphics and by itself constitutes a revolution in work methods. The

fact is that a graphic display—attached to a high bandwidth channel—

can display many characters in the time it would take a user to type

very few. If the choices displayed cover the users' needs, he can

enter information more quickly by selection. The author first saw

the principle in (Smith, 1969) and (George, 1958) but has since observed

it in many systems. Noteworthy examples are an order entry system for

a mall-order company (Gladwin, 1970) and a hospital patient-note

system (Ridsdale, 1970).

In these latter two systems, selection is not by light pen but

by code entry through an alphameric keyboard. Experience with Emily

suggests that keyboard code entry is better than light pen selection

because of two user frustrations. First, the menu does not provide a

target for the light pen while the display is changing: and second,

the delay can vary depending on system load. With keyboard codes,

the user can go at full speed in making selections he is familiar with,

but when he gets to unfamiliar situations he can slow down and wait

46

for the display. Thus, his behavior can travel the spectrum from typing

speed to machine paced selection.

The second principle to avoid memorization is names not numbers.

Vrhen the user is to select from a set of items he should be able to

select among them by name. In too many systems, choices are made by

entering a number or code which the system uses to index into a set of

values. Users can and do memorize the codes for their frequent choices,

though this is one more piece of information to obscure the problem at

hand. But when an uncommon choice is needed, a code book must be

referenced. Symbol tables are understood well enough that there is

no excuse for not designing them into systems so as to replace code

numbers with names. In Emily, there are names for files, fragments,

display statuses, syntaxes, and non-terminals. Conceivably, the user

could even supply a name to be displayed in each holophrast. In prac

tice, though, so many holophrasts are displayed that the user would never

be done making up names. For this reason, the holophrast contains

the non-terminal and the first few characters for the text—a system

generated 'name' with a close relation to the information represented

by that name. Because it is also possible to forget the meaning of a

name, a system should also provide a dictionary. System names should

be predefined and the user should be allowed to annotate any other

names he creates. The lack of a dictionary in Emily has sometimes been

a nuisance while trying to remember what different text fragments

contain.

The next principle, predictable behavior, is not easy to describe.

The importance of such behavior is that the user can gain an 'impression'

47

of the system and understand its behavior in terms of that impression.

Thus by remembering a few characteristics and a few exceptions, the

user can work out for himself the details of any individual operation.

In other words, the system ought to have a 'Gestalt' or 'personality'

around which the user can organize his perception of the system. In

Emily all operations on text appear to make it expand and contract.

Text creation expands a non-terminal to a string and the viewing opera

tions expand and contract between strings and holophrasts. This

commonality lends the unity of predictable behavior to Emily.

Predictable behavior is also enhanced by a modular system designed

in accordance with the hierarchical approach. If the same subroutine

is always used for some common Interaction, the user can become accus

tomed to the idiosyncracies of that interaction. For instance, in

Emily there is one subroutine for entering names and other text strings

so that all keyboard interactions follow the sam.e conventions.

The last memory minimization principle is access to system infor-

mation. Any system is controlled by various parameters and keeps

various statistics. The user should be given access to these and should

be able to modify from the console anv parameter that he can modify in

any other way. With access to the system information, the user need

not remember what he said and is not kept in the dark about what is

going on. Emily provides means of setting several parameters, but

fails to have any mechanism for displaying their values. This over

sight is due to a failure to remember that the user might not have

written the system. Another such oversight is a failure to provide

48

error messages for many trivial user errors. Even worse, the 'MULTIPLE

DECLARATION' error message originally failed to say which identifier

was so declared. This has been corrected, but should have been

avoided by attention to the 'Access to system information' principle

of user engineering.

Optimize Operations

The previous section stressed the design—the logical facilities—

of the set of commands available to the user. 'Optimize operations'

stresses the physical appearance of the system—the modes and speeds

of interaction and the sequence of user actions needed to invoke

specific facilities. The guiding principle is that the system should

be an unobtrusive as possible, a tool that is wielded almost without

conscious effort. The user should be encouraged to think not in terms

of the light pen and keyboard, but in terms of how he wants to change

the displayed information.

The first step in operation optimization is to design for rapid

execution of common operations. Because Emily text is frequently modi

fied in terms of its syntactic organization, a data structure to

represent text was chosen so as to optimize such modification. The text

display is regenerated frequently, so considerable effort was expended

to optimize that routine. More effort is required, though; it is still

slow largely because a subroutine is called to output each symbol. Less

frequent operations like file switching do not justify special optimiza

tion. Lengthy operations, however, should display occasional messages

49

to indicate that no difficulty has occurred. For instance, while print

ing a file Emily displays the line number of each tenth line as it is

printed.

As the system reacts to a user's request, it should observe the

principle of display inertia. This means the display should change

as little as necessary to carry out the request. The Emily DELETE

operation replaces a holophrast (and the text it represents) with a

non-terminal symbol. The size and layout of the display do not change

drastically. Text cannot be deleted without first being contracted to

a holophrast, thus deletion—a drastic and possibly confusing operation-

does not add the disorientation of a radically changed display. The

Emily display also retains inertia in that the top line changes only

on explicit command. Some linear text systems always change the dis

play so the line being operated on is in the middle of the display.

Because the top line keeps changing, the user is sometimes not sure

where he is in the text. The Emily automatic indentation provides addi

tional assistance to the user. As text is created in the middle of

the display, the bottom line moves down the display. Since this line

is often not indented as far as the preceding line, its movement makes

a readily perceptible change in the display.

One means of reducing the user's interaction effort is to design

the system so the user can operate it on 'muscle memory.' Very repeti

tive operations like driving a car or typing are delegated by the

conscious mind to the lower part of the brain (the medulla oblongata).

This part of the brain controls the body muscles and can be trained to

perform operations without continual control from the conscious mind.

50

One implication of muscle memory is that the meaning of specific inter

actions should have a simple relation to the state of the system. A

button should not have more than a few state dependent meanings and

one button should be reserved to always return the system to some basic

control state. With such a button, the muscle memory can be trained

to escape from any strange or unwanted state so as to transfer to a

desired state. In Emily the buttons of the program function keyboard

obey these principles. The NORMAL button always returns the entire

system to a basic state waiting for commands. Other buttons have very

limited meanings and it is usually possible to abort one command and

invoke another simply by pushing the other button (without pushing

NORMAL first).

A second implication of muscle memorv for system design is that

the system must be prepared to accept commands in bursts exceeding ten

per second. (Typing 100 words per minute is 10 characters per second.

A typing burst can be faster.) It is not essential that the system

react to commands at this rate, because interactive computer use is

characterized by command bursts followed by pauses for new inspiration.

But if command bursts are not accepted at a high rate, the muscle memory

portion of the brain cannot be given full responsibility for operations.

The conscious brain has to scan the system indicators waiting for GO.

Command bursts from muscle memory account for the unsultabillty of the

light pen for rule selection as discussed under 'selection not entry'.

Another failure of Emily to accommodate muscle memory is the

mobility of identifiers in the menu. As new identifiers are created

51

they are inserted in the menu in alphabetic order. The user cannot

memorize the location of an item, but must read the menu each time to

find what he wants, if it is there at all. At least two solutions

are possible and perhaps both are needed. The first solution would

be to display the letters of the alphabet for initial selection and then

to display the identifiers available in that section of the alphabet.

This would only be done if there were more than two menu-fulls of

identifiers so that in many cases a user would only have to make one

interaction to select an identifier. As a second solution, special

menus would be available whose contents were entirely under the user's

control. The user would be able to store identifiers and fragments

in these special menus and recall them with button pushes. Since he

has control of the location in the menu, he can find a required item

very quickly.

In addition to optimizing the interaction time, the system

designer must be prepared to reorganize command parameters. Observa

tion of users in action will show that some commands are not as

convenient as their frequency warrants while other commands are seldom

used. Inconvenient commands can be simplified while infrequent commands

can be relegated to sub-commands. Such reorganization is simplified

if the original system design has been adequately modularized. High

level command routines can be rewritten without rewriting low level

routines and the latter can be used without fear that they depend on

the higher level.,

52

A good example of command reorganization in Emily has been the

evolution of the view expansion commands. In the earliest version,

pointing the light pen at a holophrast expanded it one level, so that

each of the subnodes of the holophrast became a new holophrast. With

this mechanism, many interactions were required to view the entire

structure represented by a holophrast. Very soon the system-designer/

user added a system parameter called 'expansion depth'. This parameter

dictated how many levels of a holophrast were to be expanded. To set

the expansion depth, the user pushed a button (on the program function

keyboard) and typed in a number (on the alphameric keyboard). It

soon became obvious that users almost always set the expansion depth

to either one or all. Consequently, two buttons were defined, so that

the user could choose either option quickly. Later, the button for

typing in the expansion depth was removed and that function placed

under a general 'set parameters' command. Further experience seems

to indicate that only the 'expand one level' button is required. It

would take effect only during the next holophrast expansion. At all

other times, holophrasts would always he expanded as far as possible.

Engineer for Errors

Modern computers can perform billions of operations without errors.

Knowing this, system designers tend to forget that neither users nor

system implementers achieve perfection. The system design must protect

the user from both the system and himself. After he has learned to use

a system, a serious user seldom commits a deliberate error Usually he

53

is forgetful, or pushes the wrong button without looking, or tries to do

something entirely reasonable that never occurred to the system designer.

The learner, on the other hand, has a powerful, and reasonable, curiosity

to find out what happens when he does something wrong. A system must

protect itself from all such errors and, as far as possible, protect

the user from any serious consequences. The system should be engineered

to make catastrophic errors difficult and to permit recovery from as

many errors as possible.

The first principle in error engineering is to provide good error

messages. These serve as an invaluable training aid to the learner and

as a gentle reminder to the expert. With a graphic display it is

possible to present error messages rapidly without wasting the user's

time Error messages should be specific, indicating the type of error

and the exact location of the error in the text. Emily does not have

good messages for user errors. Currently, the system blows the whistle

on the 2250 and waits for the next command from the user. Each error

is internally identified by a unique number, and it will not be diffi

cult to change the system to display the appropriate message for each

number.

It is not enough to simply tell the user of his errors. The system

designer must also be told so he can apply the principle engineer out

the common errors. If an error occurs frequently, it is not the fault

of the user, it is a problem in the system design. Perhaps the keyboard

layout is poor or commands require too much information. Perhaps

54

consideration must be given to the organization of basic operations

into higher level commands.

Emily provides several means of feedback from the user to the system

designer. (Though for the most part, they have been one and the same.)

A log is kept of all user interactions, user errors, and system errors.

There is a command to let the user tvpe a message to be put in the log

and this message is followed by a row of asterisks. When the user is

frustrated he can push a 'sympathy' button. In response, Emily displays

at random one of ten sympathetic messages. More importantly, frustra

tion is noted in the log and the system designer can examine the user's

preceding actions to find out where his understanding differed from the

system implementation.

'Engineering errors out' does not mean to make them impossible.

Rather they should be made sufficiently more difficult that the user

must pause and think before he errs. In Emily, time consuming operations

like file manipulation always ask the user for additional operands. If

he does not want the time consuming operation he can do something else.

To delete text, the user must think and contract it to a holophrast.

This means that large structures cannot be cavalierly deleted.

A single erroneous deletion can inadvertently remove a very large

substructure from the file. To protect the user the system must provide

reversible actions. There ought to be one or more well understood

means for undoing the effects of any system operation. In Emily, a

deleted structure is moved to *DUMP*. If the user has made a mistake,

he can reach into this 'trash can' and retrieve the last structure he

55

has deleted. (Deletion does destroy the old contents of *DUMP*.) A

more general reversible action mechanism would be a single button that

always restored the state existing before the last user Interaction.

Emily has no such button, but the QED system (Thompson, 1968) supplies

a file containing all commands issued during the console session. The

user can modify this file of commands and then use it as a source of

commands to modify the original text file again.

Besides helping the user escape his own mistakes, error engineering

must protect the user from bugs in the system and its supporting soft

ware. Modular design is important to such protection because it

minimizes the dependencies among system routines. The implementer should

be able to modify and improve a routine with confidence that his changes

will affect only the operation of that routine. Even if the changes

introduce bugs, the user will be protected if the designer has observed

the principles of redundancy and data structure integrity.

Redundancy simply means that the system provides more than one means

to any given end, A powerful operation can be backed up by combinations

of simpler operations. Then if the powerful operator fails, the user

can still continue with his work. Such redundancy is most helpful while

debugging a system, but very few systems are completely debugged and any

aids to the debugger can help the user. As an adjunct of redundancy, the

system must detect errors and let the user act on them, rather than simply

dumping memory and terminating the run. In Emily, the PL/I ON-condition

mechanism very satisfactorily catches errors. They are passed to a

subroutine in Emily that tells the user that a catastrophe has occurred

56

and names the routine where the error was detected. Control then returns

to the normal state of waiting for a command from the user, who has the

option to continue or call for a dump.

A system should provide sufficient data structure integrity that

regardless of system or hardware trouble some version of the user infor

mation will always be available. This principle is especially applicable

to Emily where most of the information is encoded by pointers. A small

error in one pointer can lose a large chunk of the file. Some effort

has been spent ensuring that errors in Emily will not damage the part

of the data structure kept in core during execution. But if an error

abruptly terminates Emily execution (such errors are generally in the

system outside Emily) the file on the disk may be in a confused state.

Currently, the only protection is to copy the file before changing it,

but there are file safety systems that do not rely on the user to protect

himself.

In a safer system, modified text records would be written to a

temporary file. The rest of the file would be copied to the temporary

file when the user switched to another file. Then the temporary file

and the original file would be renamed so as to swap roles. With this

system, there would always be one correct copy of the file, even if it

was not completely up-to-date. For added protection and to ontimize

access, an independent program can be written to reorganize the data

structure in an Emily file. This reorganization would attempt to put

a node and its subnodes all in the same record. An algorithm for

57

reordering a data structure to localize substructures has been reported

in 'Compact List Representation: Definition, Garbage Collection, System

Implementation' (Hansen, 1969).

Protection and assistance for the user are keywords in user

engineering. The principles outlined in this chapter are not as impor

tant as the general approach of tailoring the system to the user. Only

by such an approach can Computer Science divest the computer of its

image as a cold, intractable, and demanding machine. Only by such

an approach can the computer be made sufficiently useful and attractive

to take its place as a valuable tool for the creative worker.

58

5, Syntactic Formalism

The potential of the current Emily implementation is described and

circumscribed by the syntactic formalism in which user languages are

described. This chapter outlines that formalism in sufficient detail

for the reader to understand its limitations. Definition of several

terms will facilitate further discussion:

user language - the language being described in the formalism.

An Emily user will create text in this language,

Emily formalism (or just formalism) - a language for describing

user languages,

syntax definition - a statement written in the formalism to

describe a specific user language,

syntax designer - the expert who creates a syntax definition.

Abstract and Concrete Syntax

The formal description of the user lan^age must fulfill three

functions within the Emily system. First, it specifies the internal

structure that will represent a tree. For this purpose, the syntax

must specify a sequence of non-terminals for the right side of every

rule. Second, the syntax must specify how each rule is to be dis

played. Not only must this include terminal symbols, but it must

include control of indentation and other formatting. Finally, a

simple string must be generated for each rule to represent that rule

as an option in the menu. This function is performed by assuming that

each subnode of the rule is a non-terminal symbol.

59

To satisfy these three functions, the syntax is coded into a pair

of tables. One table-the abstract syntax-controls the hierarchical

structure of generated text. It specifies which syntax rules can

replace a given non-terminal symbol and the sequence of non-terminal

symbols on the right side of each syntax rule. Another table—the

concrete syntax—tells how to display each rule: it includes punctua

tion, reserved words, and formatting information like indentation and

line termination. The division into abstract and concrete syntax,

first suggested by J, McCarthy (1953), means that there can be more

than one concrete syntax for each syntax and thus that a text can be

displayed in more than one format. This has such applications as

emphasizing certain text components, changing from partial to full

parenthesizatlon. and even partially converting from one language to

another, A language definition in the formalism is converted into the

abstract and concrete syntax tables by the syntax processor.

The syntactic form.alism permits several extensions to the normal

BNF descriptive formalism, as was used in Chapter 2, In this chapter,

the Emily formalism is described by means of the BNF formalism. But

because BNF does not provide a convenient method of specifying the

spacing and indentation of the text, the Emily formalism is described

by means of itself in Appendix B.

60

Structure of the Formalism

Like BNF, the Emily formalism is a sequence of rules specifying sub

stitutions for non-terminal symbols. The essential components of a

syntax definition can be described (in BNF) by:

(syndef/ :

<pr> :

<rhs>

(item) :

:= (pr>*

:= < (nt) > (rhs) *

:= : (i tem)*

:= < (n t) > 1 ' (s t r i n g) '

Here, the symbols have these meanings:

(syndef) - syntax definition;

\Pî) ~ (production) a non-terminal and a set of possible

replacements•

(rhs) - (right-hand-side) a string of symbols representing one

possible replacement;

(item) - one of the symbols in the right-hand-side;

(nty - (non-terminal) a non-terminal in the description of the user

language;

(string) - a terminal symbol in the user language.

The superscript asterisks indicate that those non-terminal symbols may

appear one or more times. Note that the non-terminal brackets, '<' and

'>', are explicit. When the syntax designer enters a non-terminal name,

he does not enter these brackets. (Readers familiar with BNF may notice

that this syntax is ambiguous. The system is unaware of ambiguity though

because text is generated and not parsed. For the reader, the ambiguity

is resolved by indentation.)

61

One possible syntax written in the Emily formalism is:

<AEXP> : <ATERM> '+' <AEXP>

: <ATERM> '-' <AEXP>

<ATERM> : <ARITH>

: '(' <AEXP> ') '

The reader might convince himself that the (item)'s in this syntax are

six instances of <(nt)> and four instances of '(string)'.

A more complete description of the Emily formalism in shown in Figure

5.1. Careful comparison of the figure with the simple description above

will show that the latter is indeed a subset of the former. Note in the

figure that the rule for (syndef) and the fourth choice for (pr) allow

the syntax designer to group the syntax in sections each with its own

(title). This means that rather than just a sequence of rules, the

syntax definition may itself be a hierarchical structure. This is a con

venience for the designer and readers of the syntax, but does not affect

the expressive power of the formalism.

The abstract syntax tables are generated solely from the structure

generated by ^pr)'s, (rhs)'s, ^star)'s, and those (item)'s that contain

(nt) . These components will be discussed in the next two sections. All

other (item)'s are included solely for generation of the concrete syntax,

as discussed in the following two sections, A final section evaluates

this formalism with respect to its impact on the user and the system

designer.

62

(syndef) ::= (title) < (nt) > IS OUTER N-T

^r)'* (prlntspec)*'

(pr) ::= < (nt) > (rhs)*

I < (nt) > IS A CONSTANT

I < (nt> > IS AN ID

I (title) (pr)* (prlntspec)*'

(printspec) : := < (nt) *> (rhs)

(rhs) ::= : (item)* | : ((label)) (item)*

BLOCK (item)*

((label)) BLOCK (item)*

(item) ::= < (nt) > | < (nt) / (star) >

I < (nt)/DECL > I < (nt)/DECL/(star)

I '(string)' I INDENT (indent) | NL?

I IFT ((item)*) | NOT

I SND (sndno) IN ((label) - (label))

I DAD = ((label)) | SNDMT (sndno)

I XIT I ,,, (18 more options)

(star) ::= * | *? | ? | */(item)*

I *?/(item)* I */'(string)'

I *?/'(string)'

I */((label)) 1 *?/((label))

Figure 5,1, BNF Description of Emily Syntactic Formalism

A superscript '*' on a non-terminal symbol means that symbol may be
repeated one or more times; '*?' indicates zero or more repetitions.
The following represent non-terminals that must be replaced by ter
minal strings typed on the keyboard: (title), (nt), (label), (string),
(indent) , and (sndno) ,

63

Identifiers

The second and third options for (pr) in Figure 5.1 declare non

terminal symbols to represent classes of terminal symbols. For example

<NUMBER> IS A CONSTANT

<ARITH> IS AN ID

declare that the non-terminals <NUMBER> and <ARITH> must be replaced by

terminal symbols entered from the keyboard. Every non-terminal specified

to be a CONSTANT or an ID generates a different class of symbol. For

all practical purposes, all CONSTANT'S are treated alike. Every CONSTANT

entered is stored separately. Identifiers, though, are stored uniquely

in each class. That is, there is one copy of the identifier and every

instance of it is stored as a pointer to that single copy. Identifiers

can be accessed with the interactive cross reference facility.

The identifier facility has been implemented so identifiers obey

the declaration block scope rules of PL/I and Algol. This feature requires

considerable code in the system and the options BLOCK and DECL in the

formalism. Of the options for (item), DECL appears in two of the four

choices containing (nt) . The DECL option is used only when the (nt) is

elsewhere specified to be an identifier. Instances of identifiers gen

erated by <(nt)/DECL> or < (nt)/DECL/(star) > are recognized as declaration

instances. All other identifier instances are recognized as identifier

references. For example, in a syntax for PL/I there might appear

<DECL> : DCL <ARITH/DECL> FIXED;

<ASSIGN> : <ARITH> = <ARITHX>;

64

Then if the generated text contains

DCL A FIXED; A = <AP.ITHX>;

the system recognizes that the first instance is a declaration and the

second is a reference to the declared identifier.

Block scope is controlled by the BLOCK options for (rhs). Any node

generated from a rule with this option delimits a block. All declara

tions in that node and its subnodes control only references within the

same set of nodes. In PL/I, a procedure name is in the scope outside

the procedure but any parameter names are within that scope. For this

reason, the syntax for procedures looks like this:

<PROC> : <ENTRYNM> : PROC <PROCBODY> END;

<PROCBODY> : BLOCK <PROCOPT/*/' '>; <STMT/*/NL?>

<PROCOPT> : (<PARIV*/', '>)

All identifiers declared within a <PROCBODY> are accessible only within

the <PROCOPT>'s and the <STMT>'s, •

Lists

Because lists of various kinds are found in most languages, it is

convenient to have a special renresentation for lists in any syntactic

formalism. In Figure 5.1, a superscript asterisk indicates that the given

non-terminal may be repeated any number of times. In the Emily formalism,

lists are represented by items in one of these two forms:

<(nt)/(star)> < (nt)/DECL/(star) =

65

where (star) has nine options, each generating a slightly different

kind of list. The most elementary is the plain asterisk as in

<STMT/*>

which represents a sequence of one or more statements. Asterisk and ques

tion mark indicates a sequence of zero or more elements. Question mark

alone describes a non-terminal that may appear zero or one times. In

practice, this means the user is given the choice EMPTY along with all

other choices for the indicated non-terminal. If he selects EMPTY, the

non-terminal simply disappears from the text,

Some options for (star) contain a slash. These options specify

the separator symbols that will appear between successive non-terminals

in the list. For instance, <PARM/*/', '> specifies a list of one or

more parameters separated by commas. The separator may be any sequence

of items; sometimes it is convenient to specify format codes in addition

to character strings. Because non-terminals can be included as separa

tors, a possible syntax for arithmetic expressions could be

<ARX> : <ARX/*/<AOP>>

: <VAR>

: (<ARX>)

<AOP> : +

; *

However, it is difficult to automatically parenthesize such expressions.

A list separator is often just a string of characters, so this possi

bility is provided as a shortcut. The string in <PARM/*/', '> can be

66

generated with either */(item) or the shortcut */'(string)'.

From a list item, the syntax processor generates a unique non

terminal with a single replacement rule. Ordinarily this rule contains

the list element non-terminal, the separator sequence, and the unique

list non-terminal. To permit the syntax designer to specify the entire

contents of this rule, the (printspec) mechanism is provided. The

designer chooses a ((label)) option for (star) and elsewhere generates

a (printspec) with the list element non-terminal on the left and the

same label on the right (as part of the (rhs)). The right side of this

(printspec) is taken as the syntax rule for the list non-terminal. This

mechanism was used in the PL/I syntax to generate a list of <ENTRYNM>'s

each preceded by a colon.

Display Format

All (item)'s not discussed above are provided only to describe the

display format of the generated text. Text for a node is generated from

left to right. When a (string) is encountered, it is displayed as the

next piece of text. When an <(nt)> is encountered, a check is made to

see whether the user has created the corresponding subnode yet. If not,

the non-terminal symbol is displayed, otherwise, the display generator

calls itself (recursively) to generate text for the subnode. On return,

generation of text continues with the next item in sequence for the

current node.

Items other than non-terminals and strings can be viewed as 'opera

tors' that are 'executed.' Thus the syntax is not solely a descriptive

67

mechanism, but specifies a sequence of actions that occur in a given

order. This view of syntax is similar to that used in the Meta systems

(Schorre, 1964) where the sequence of actions is used to specify a trans

lation of a string recognized by the syntax.

The most fundamental (and first implemented) Emily display format

operators are NL? and INDENT. NL? specifies that the current display

should be terminated and further text should be displayed on the next

line. If the text is already at the beginning of a line, though, NL?

has no effect. (Thus the question mark indicates uncertainty rather

than a predicate.) Any indentation of the new line is controlled by

prior execution of the INDENT operator. The indentation specified with

INDENT is relative to the indentation when the current node was entered.

Thus the indentation can be increased for part of the display of a node

and decreased thereafter. As an illustration, a DO-group might have

the syntax:

<STMT> : 'DO' INDENT+8 <D0 OPT>

INDENT+4 NL? <STMT/*/NL?>

INDENT-K) NL? 'END;'

Here if the DO-OPTion extends to more than one line it will be indented

eight spaces while the list of statements will be Indented four spaces.

Finally, the 'END;' will be at the same Indentation as the 'DO'.

68

Conditional Display

Many display formats cannot be described with the above mechanisms.

For these Emily provides conditional format control operations. The

syntax designer can test the contents of a given subnode to determine

how to display the text. Conditional display is based on a toggle switch

(a different switch for each recursive level of the display generator).

Several display operators set the toggle true or false depending on

text being displayed. Then the operation

IFT ((item)*)

tests the toggle and executes the enclosed sequence of (item)'s only

if the toggle is true. Multiple conditions can be tested by nesting

IFT(...) operations.

The choices for (item) in figure 5.1 shovr four of the toggle setting

operators. NOT simply changes the setting of the toggle from true to

false and vice versa. In the option

SND (sndno) IN ((label) - (label))

the two (labelVs must appear on rules for the (sndno)' th non-terminal

symbol in the current node. The toggle is set true if that non-terminal

has been replaced by a node generated according to one of the rules

between the two labels. To illustrate, note that an addition must be

parenthesized if it is an operand of a multiplication. This is described

in the formalism as follows:

59

<ARITHX> : <ARITH>

: (ADD) <ARITHX> '+' <ARITHX>

: (SUB) <ARITHX> '-' SND 2 IN (ADD-ADD) IFT('(') <ARITHX> IFT(')')

: (MUD SNDl IN (APD-SUB) IFT('(') <ARITHX> IFT(')')

'*' SND2 IN (ADD-SUB) IFT('(') <ARITHX> IFT(')')

Either subnode of a (MUL) will be parenthesized if it is an addition

or a subtraction.

The test SNDMT (sndno) sets the toggle true if the (sndno)'th subnode

has been replaced by EMPTY. (This is possible only if the subnode is

described with < (nt) / (star) > and the star option contains a question

mark.) This test for EMPTY is used to control the display of list sep

arators. When the syntax designer codes—for example, <ARG/*/', '> the

syntax processor generates a production for the non-terminal <ARG*>.

This production has a form that could be described by

<ARG> SNDMT2 IFT(XIT)', '<ARG*> .

The XIT operator used here simply discontinues execution of onerators

for this node. Control returns to the next operator for the node containing

the current node.

A final conditional display test is the operator

DAD = ((label))

This operator sets the toggle true only if the father of the current

node was generated by the rule with the given label on its right hand

side. This permits limited context testing to control the display of

text. •

70

Evaluation of Syntactic Formalism

Initially, Emily was to be implemented for PL/I only and there

were no plans to design a syntactic formalism. It soon became apparent,

though, that the syntax would have to be adjusted and modified. Since

the system was table driven anyway, it seemed possible to build a

compiler to translate from a syntax definition to internal tables. With

each change in system facilities, new features were added to the for

malism. Lists, conditional display operations, and identifier scopes

each required modification to both the formalism and the compiler. As

will be discussed in the next paragraphs, the resulting formalism meets

the goals of preventing errors and handling ambiguous syntaxes, but

there are significant limitations.

The original vision of the Emily system pictured a system that

would not permit the user to make any syntax errors. Not only would he

always have punctuation correct, but the system would also segregate

identifiers into classes and permit only valid identifiers in expressions.

In practice, such benevolent protectionism'is difficult to achieve. A

particular problem is that PL/I allows factored declarations. Attempts

to protect against incorrect attributes at any level of factoring lead

to a bewildering variety of non-terminal symbols. This is a manifesta

tion of a more general problem: as the specificity of the syntax

increases, so do the number of choices and thus the number of inter

actions required by the user to create a given text. Only with a

more extensive computational capability could a syntactic formalism

71

prevent all possible errors. Because of the expense—in both core and

time—such checking is perhaps best left to compilers. The interactive

system should attempt only to reduce errors to the extent that all can

be detected with one compilation.

Most systems based on BNF must make one or another restriction on

the grammar so the system can generate a recognizer to parse strings

in the language. With Emily, strings are always parsed and always meet

the grammar. Thus, as was expected when the project began, Emily can

handle any syntax, no matter how ambiguous. But texts in the grammar

must be read by the user and understood. For this purpose, the display

of the text, at least, has to be unambiguous. One problem that arose

early was that the text could appear unambiguous to both the system

and the reader and yet still be read wrong by the PL/I compiler. Con

sider

IF bool-exp THEN stmt-1 ELSE stmt-2

and IF bool-exp THEN stmt-3.

If stmt-1 is replaced with the second form of IF statement, the PL/I

rules specify that the ELSE goes with the second IF. But Emily would

be aware of the structure and would display the inner IF indented from

both the outer IF and its ELSE. The user would tend to read the state

ment as he intended it instead of as the PL/I compiler will read it.

This problem was solved with the conditional facilities of the syntax

display mechanism. In the above case, the ambiguity is resolved by

automatically generating an ELSE after the inner IF statement.

72

Experience has shown that the Emily formalism should have had more

provision to test the typographical environment. Currently, the envi

ronment can only be tested to determine if the next character will be

placed beyond some specified column. It would sometimes be convenient

to test how many characters are left in the current line or how many

lines are left in the display or the page. These and other environment

tests can be added to the display format mechanisms with little modi

fication to the current system.

The Emily display mechanism can be contrasted with the mechanism

used by Koch and Schwarzenberger (1969) to format the printing of syntax

rules for PL/I. In their formalism, the display of a node can be con

trolled by two levels of context. That is, the choice of format can

be based on both father and grandfather. Unlike Emily, subnodes cannot

be tested. The Emily mechanism was chosen because it was simple to

implement. It requires only one display format for each rule while

the Vienna mechanism requires several with choice being made on the

basis of context.

A major limitation of the Emily syntactic formalism is that one

syntax specification is used for three purposes: to describe the struc

ture of the generated text, to control the display of that text, and

to specify the choices to be presented in the menu. To a degree, the

display can be modified by replacing the concrete syntax, but the menu

and text structure are inextricably linked. If the syntax designer

desires to change the order of menu choices, he cannot use the new

73

syntax for any existing text. Moreover, if he provides 'shortcut' pro

ductions that will be the same as some tree of other productions, the

two trees will be different internally, and the user cannot dissect

the shortcut generated tree into its components. A third problem is

that some sets of choices are valid for several different non-terminals.

For example seven attributes are repeated for each of <ARITH ATTR>,

<BIT ATTR>, <CHAR ATTR>, <PTR ATTR>, and <DATA ATTR.>. This repetition

requires a substantial amount of table space.

To solve these problems, the distinction between abstract and con

crete syntaxes must be extended to three syntax specifications. The

basic syntax would specify a set of replacement strings where each

string included only non-terminal symbols. Strings would be labeled so

they could be referenced from the other two syntaxes and so replace

ments with only terminal symbols could be distinguished from each other.

A second syntax would specify a display format for any tree constructed

according to the basic syntax. These first two syntaxes are roughly

equivalent to the current abstract and concrete syntaxes. The third

syntax would specify the choices in the menu. For each choice, a menu

representation would be given along with a tree structure to be sub

stituted for the current non-terminal.

With three syntaxes, the syntax designer has enough flexibility to

try the kinds of experiments that experience has shown to be necessary.

He can rearrange menu options and he can specify that a single selec

tion will create a tree of arbitrary complexity. New problems arise.

74

however, because with this proposal, it is no longer true that contrac

tion and deletion are the inverse of text creation. A holophrast might

represent a non-terminal in the middle of a tree specified by the menu

syntax. It is possible that this non-terminal has never been seen before

by the user. In other respects as well there is no longer a direct,

tangible relationship between the user's actions and the created text.

The extent to which this added complexity confuses or disturbs users

can only be determined by further experimentation.

75

6. Observations and Conclusions

Preceding chapters have shown how a system can be designed around

the principle of text construction by selection of syntax rules. Each

chapter has discussed the ramifications of individual portions of the

system, but the system must be considered as a whole to judge the effec

tiveness of the concepts and of this particular implementation of those

concepts. This chapter will discuss what has been learned by implement

ing and using Emily. A final section will consider possible extensions

of this work.

The Hierarchical Hypothesis and System Implementation

Although plans for the Emily project did not include a full test of

the hierarchical hypothesis, it was possible to employ programming

techniques dictated by that hypothesis and observe the results. One

concern was to test whether a system could be written while adhering to a

hierarchical coding discipline. This discipline dictates that the system

be written with few labels and be modularly divided into hierarchical

levels of subroutines. Code without labels is ideal if the program is

written with the aid of Emily. All the code subordinate to an IF or DO

can be represented by a single holophrast so the reader can observe just

the flow of control statements. When he wishes to read subordinate code,

he simply expands the corresponding holophrast.

Though it was not written with the aid of Emily, the Emily imple

mentation follows the labelless discipline fairly well. In six thousand

76

statements there are only forty labels, excluding labels necessary to

simulate the CASE statement. Often, a label in Emily signifies code

that was changed after it was first written. The label served to change

the flow of control without having to rewrite a large section. The CASE

statement is a generalized IF statement wherein an arithmetic expression

selects one of a group of statements to be executed. Hierarchical coding

requires a CASE statement. The Emily system, for example, would have

used the CASE statement to decode the concrete syntax. In the present

PL/I implementation, a label array must be used and this requires two

labels for each case in order to avoid error messages and a subroutine

call for the GOTO.

Implementation of a modular, hierarchical subroutine structure pre

sented few difficulties. To allow separate compilation, subroutines are

not nested within each other, but there are several logical levels of

subroutines as shown in Figure 5.1. At the highest level are the control

modules including several 'user oriented routines.' Each of these con

trols the sequence of operations for one or more of the buttons on the

function keyboard. Just below the control level are routines to convert

user requests into operations on the Emily data structures, and these

routines call on a third level to convert from data structure operations

into basic input/output operations. Specific requests for system opera

tions are made by the fourth level routines. As it stands, this diagram

violates the hierarchical hypothesis, for example four higher level routines

refer to 'Wait for a User Action.' However, the blocks represent subrou

tines and the flow of control at execution time does exhibit hierarchical

77

Function
Dispatcher

Control Routines <

User Oriented
Routines

Translation from User
Operation to Data
Structure Operation

Translation from Data
Structure Operations
to Input/Output Commands

Execute Input/Output
Commands

Move/Copy

Data
Structure
Manipulation

Get a
Record
from file

Display
Control Monitor

Generate
Text
Token

V

Display
Text

Monitor
Functions

Figure 6.1. Hierarchical Structure of the Emily System

behavior. In fact, because all lines lead downward, only one sequence

of lines can be active at any given time.

A hierarchical solution was also chosen for the system implementa

tion problem of how to store the text. One method—considered in the

design of an earlier system—was to store the text as a string and parse

it when necessary. This approach would facilitate display generation,

but offers formidable problems for syntax controlled text modification

and holophrastic representation. The text would somehow have to Include

non-terminal symbols and the requirement for a parser would probably

restrict the class of permissible languages. These problems were

avoided by storing Emily text in the hierarchical structure outlined in

the second chapter.

In a tree structure, each node can represent many characters so it

might seem that it could be a more economical representation than strings

of characters. Perhaps this is the case with a language like COBOL that

has long keywords, but it is not the case with PL/I. The Emily tree for

a typical PL/I routine requires roughly fivfe or six times as much storage

as the corresponding string of characters. Between twenty-five and

thirty-five percent of this total is occupied by data structures for

identifiers, including chains of references and block structure infor

mation. In fact, each individual reference to an identifier requires

sixteen bytes, which is usually larger than the identifier itself.

When the author began Emily, he had never used a storage management

system like that in PL/I where the user has explicit responsibility for

79

freeing allocated storage. He was curious to compare such a system

with the automatic garbage collection in systems like LISP. However,

most of the Emily data structure consists of nodes that are only refer

enced from one other node in the structure. When that reference is

severed (because the user modifies text) the referenced node can be freed.

For these cases, explicit freeing was a simple operation and only a small

part of the procedure to sever a reference. All identifiers are linked

in a symbol table and can be referenced even if they are not referenced

by any text node. For this reason, identifiers are never deleted. In

short, the PL/I storage management mechanisms were very convenient for

this particular application.

A problem was noted with the OS/350 storage management for the space

required by the various Emily modules (scatter loaded in order to use

Large Core Storage). OS allocates space in multiplies of 2048 bytes.

Since most modules are not multiples of any reasonable number, there

was some waste space in almost all storage allocated to subroutines.

This waste was usually above 12% and went as high as 20%. Fortunately,

Large Core Storage is infrequently used at Argonne so the waste of space

was not significant.

80

User Experience

Over the past year, the author has used the Emily system for a

total of some 54 console hours. Though the majority of this time was

spent debugging various system features, at least 14 hours were devoted

to creating various versions of the PL/I syntax definition (Appendix C).

Another 4 or 5 hours were spent demonstrating the system to interested

observers. From this console experience it is possible to make a

variety of observations concerning the system and the concepts it

implements.

Because Emily is intended for programming in a higher level language,

this analysis will concentrate on the console session during which I

created the procedure FIND_ID listed in Appendix D. This procedure is

similar to a portion of the Identifier handling scheme in Emily and

represents an algorithm slightly more complex than can be conveniently

memorized. During the session when I created FIND_ID, I did not refer

to the program listing, but reconstructed the algorithm by thinking it

through. A few days later, for comparison", I used the RESCUE text editor

(Joseph, 1969; Drltz, 1969) to reconstruct FIND_ID again. For the latter

experiment, the console was an IBM 2741 terminal (a selectric typewriter).

Statistics for both runs are summarized in Figure 6.2. It should be

noted that since the experimenter served as his own subject, this analy

sis lacks objectivity. The major purpose in presenting these figures is

to demonstrate the relative level of user activity required to use Emily.

Some suggestions for more objective experiments are included in the last

section of this chapter.

81

Emily RESCUE

Interactions

Text interactions

Command interactions

Characters Typed

Lines of Text

Console Time

Seconds/Interaction

4
Corrections

Backspace

Change Recent Lines

Insert Declaration

Change Older Text

Bugs in Final Algorithm

798

459 (58%)

339 (42%)

293

79

2
52 min

4.1

115

72 (53%)

43 (37%)

-1900

67

3
40 min

17.2

10

1

3

4

2

22

8

2

2

3

Figure 6.2. Comparison of Emily with a
Linear Text Editor

The text constructed was the procedure in Appendix D. The Emily
version requires 1742 characters and the RESCUE version roughly the same.

Notes: 1. An interaction is an interrupt to the computer. The
user must wait for a response before making further
entries.

2. Includes 7 min. 40 sec. of data structure sketching
that was remembered and not repeated for RESCUE.

3. Includes 7 min. 20 sec. to list and read text.

4. Number of occasions (each might require more than
one interaction).

82

For the present discussion, an 'interaction' is a user action that

demands a response from the computer. The user cannot proceed until

he receives this response. Text interactions were those directly

Involved in text construction while command interactions changed the

view or the text. The higher percentage of command interactions with

Emily reflects two facts. First, more correction was required because

the Emily version was constructed first and I had not looked at the

algorithm for several months. Second, to view text with RESCUE it was

only necessary to examine the typewriter output, so no explicit viewing

interactions were required.

With Emily, text is constructed almost entirely by interactions,

while the typewriter editor required only one interaction for each line.

Few characters need be typed with Emily; of the 293 listed, over half

were the text inside comments. With RESCUE all characters must be typed

resulting in an elevenfold increase in the number of characters that

must be typed correctly. Once text is entered, it must be displayed,

Emily automatically formats the text, which takes a burden off the user,

but Emily does not format the text as compactly as possible, as shown

by the fact that it requires twelve extra lines to print the text.

Given the shorter line length of the graphic display (39 for large char

acters), however, even more line breaks are required when the text is

displayed. (The Emily text printing routine allows a maximum of 72

characters on a line, but the line may be indented up to half the width

of the page. This feature had no affect in FIND_ID, but did cause a

few line overflows while printing the PL/I syntax in Appendix C.)

83

Ultimately, a tool must be judged in relation to its conservation

of the fundamental resource—human time. The evidence from the compar

ison of Emily and RESCUE is ambivalent. If one adds to the RESCUE time

the seven minutes of think time spent in Emily, RESCUE still took only

three-quarters as long as Emily. A number of factors mitigate this

result. First, it is necessary to distinguish between the concepts

employed in Emily and the current implementation of those concepts.

Even within this implementation, it is possible to reorganize the text

display routine to save at least a fifth of a second on every inter

action. The light pen can be replaced by some device more appropriate

for menu selection. These steps would reduce the interaction time with

little change in the system. The only way to speed RESCUE interaction,

however, is to teach the user how to type faster. (I type fairly well,

so I doubt the RESCUE time can be reduced very much.)

A second mitigating factor is the cost of mistakes and the fact

that, subjectively, Emily seems to reduce mistakes. With RESCUE I had

three times as many short-term corrections (backspace and change recent

lines) as I did with Emily. There were fewer long-term corrections

in RESCUE, but these surfaced later when comparison showed three errors

in the algorithm. These were not syntax errors, but were omitted state

ments that could only have been detected by careful testing. For

example, the test for a null input string was omitted. My experience

with RESCUE was that it required greater concentration merely to get

the syntax correct and this concentration Interferred with my analysis

of the algorithm. This experience bears out the hierarchical hypothesis

84

that operations similar to mental processes are conducive to creative

work.

Greater appreciation of the Emily facilities can be gained by careful

analysis of the use of those facilities during a console session. Figure

6.3 shows the breakdown of the 339 command interactions required to

generate FIND_ID with Emily.

Two-fifths of these Interactions served only to locate required

views of the text. Though at 4.1 seconds per interaction this amounts

to 10 minutes, RESCUE required 7 2/3 minutes to list the text and, prior

to that, several more minutes to examine typev/riter output. Two steps

can be taken to reduce viewing interactions in Emily. First, the inter

actions to set expansion depth to a large number ('+7') can probably

be eliminated by the strategy outlined in Chapter 4. Second, a single

operation can be introduced to view the tail of a list. Currently,

the user must go IN to an element and then OUT one level to see the

remainder of the list. Even with this strategy, it would still be pre

ferable to retain redundant DO END pairs like the section of FIND_ID

entitled '/* CHECK TO SEE IF ITS THERE */.' These pairs delimit the

extent of such comments and serve to emphasize the unitary steps of

the algorithm. The introduction of the extra level of nesting is wholly

in keeping with the hierarchical hypothesis.

A majority of the text modification operations for FIND_ID occurred

in two contexts: 'backspaces' and the IF statements to calculate

CHAINN0. In Emily, a backspace is a sequence of interactions to reject

a syntax rule selection. Four interactions are required with the

85

Operation

View Adjustment

IN

OUT

+1 (set expansion
parameter)

CNTRCT

expand

How Often Used

12

17

10

25

12

29

Additional Interactions
to Select Operands

12

17

12

146

Text Modification

MOVE

COPY

MORE
(more menu choices)

DELEL
(delete list element)

INAFT
(Insert list element)

DELETE

'BACKSPACE'

3

7

12

2

15

25

16
(CNTRCT last
created node)

CNTRCT

System Request

MONITOR

NORMAL

6

14

2

16

25

17

12

175

18
339

Figure 6,3, Distribution of Emily Command Interactions

These statistics are derived from careful analysis of the console
session that created Appendix D. ('BACKSP.\CE' includes only Instances
of CNTRCT necessary for backspacing as defined in the text. The corres
ponding deletions are included in the count for DELETE.)

86

present system: push CNTRCT button, light pen last generated node to

contract it to a holophrast, push DELETE, and light pen the holophrast.

This sequence of operations could easily be invoked by a single button.

As a limited form of 'rescind last operation,' it would save the user

considerable effort. (I did not realize how much effort until I

analyzed the console session and discovered that I had 'backspaced' ten

times. This illustrates the danger that the user of a system can,

through constant use, inure himself to system inadequacies.)

Many of the DELETE's and most of the MOVE's and COPY's were involved

in generating the statements to calculate CHAINNO. The method used was

similar to that shown in Figure 3.1, though not as neat and straight

forward. Analysis shows that this method saved at least a minute over

brute force creation of the IP's. More could have been saved if the

plan of Figure 3.1 had been followed.

The identifier facility has unfortunate repercussions for text

modification. This facility requires that whenever a subtree of text

is moved it must be scanned and all identifier reference links updated.

This scan requires an inordinate amount of time and seriously degrades

the system from its behavior before the identifier 'improvements' were

made. Since text is moved more frequently than it is searched for

identifiers, the system ought to be modified to remove most of the

identifier information currently maintained. The interactive cross

reference facility could still be provided, but it would require a

search while the user waited. If this approach is adopted, an old

problem will reappear: too many identifiers in the menu and no dis

tinction as to whether they have been declared or not. Possibly this

87

problem can be attacked by maintaining block structure information

and keeping a count of how often an identifier is referenced in a given

block. The system could be designed so that inaccurate counts were

no more than an inconvenience.

List modification operations are an important component of the

Emily text modification facilities. Indeed, the operations of insert

ing and deleting list elements were used more frequently than MOVE

and COPY. While constructing FIND_ID, every time text was changed

at a location other than the current last statement, an element had

to be inserted in a list of statements or declarations. The utility

of the list operations was not fully realized until they had been

implemented, but they turned out to be easy to use and well suited

to the system style of interaction. When the list facilities were

designed there was some concern over the ambiguous insertion problem

(two or more lists might have elements inserted at the same point in

the text). In practice, this worry did not materialize; the PL/I language

is so designed that there is seldom any list ambiguity. Most lists

have explicit separators, so pointing at a comma or semicolon uniquely

identifies the list in which insertion is to be made.

There are still questions concerning the list feature. One is

whether the menu options for list replacement provide enough protec

tion. Lists can be terminated either by selection from the left side

of the menu or by choosing the option 'EMPTY.' It may be too easy for

a user to select from the left when he really intends to continue the

88

list by selecting from the right. During creation of FIND_ID thirty-

six lists were terminated, eighteen by each method. Three of the

terminations by selection from the left side of the menu were premature

and the list non-terminal had to be reinserted with INAFT. (I would

have terminated a greater proportion of lists by selection from the

left except that the syntax for factored declarations includes list

non-terminals that had to be replaced by explicit substitution of

EMPTY.)

Selecting a location in a list also presents problems. To insert

an element in a list, the user must point to the character immediately

before the desired insertion point. Twice while creating FIND_ID I

pointed at a character not followed by a list insertion point. For

example, to insert in a list of statements I pointed at the character

just before the semicolon rather than the semicolon itself.

To date, the major use of Emily has been the construction of syntax

definitions and outlines. This thesis was first outlined with Emily

and several talks have been planned in a similar manner. Generation of

a PL/I syntax definition was necessary before any PL/I routines, includ

ing FIND_ID, could be built. Both definitions and outlines have an

entirely hierarchical structure; both are organized as lists of elements.

It should not have been surprising then that the hierarchy viewing and

list operations were especially helpful for text manipulation. In

fact for these simple languages, Emily behaves in a manner similar to

the hierarchical editor developed by D. Engelbart (1968). Only with

the PL/I syntax are the many advantages of Emily fully utilized.

89

Other Advantages and Disadvantages of Emily

A few experiences with Emily were not illustrated by the FIND_ID

experiment. For example, two disadvantages to the Emily concept were

apparent before the system was constructed. They did not appear to be

major problems and, in fact, were not. The first is that text must

always be manipulated in terms of its structure. This has ordinarily

been advantageous, but might be a disadvantage if a user wished to

treat text with a structure unlike its own. For instance it is not

possible to modify spacing and carriage returns by hand. Nor is it

possible to include a PL/I program fragment as part of an English text;

though this facility could be added by allowing certain classes of non

terminals to be replaced by fragment names. A second problem is not

as easy to solve but is, to date, only a problem with the PL/I language.

The macro facility in that language may specify that certain identifiers

are to be replaced by character strings before the program is compiled.

These strings can include punctuation, operator symbols, and even semi

colons. But such replaceable identifiers would usually not be allowed

and cannot be generated by Emily.

In the design stage, one advantage Emily seemed to have was automatic

adjustment of the 'field of view,' that is, the portion of the text

that occupies the display. Possibilities for automatic adjustment occur

when the user expands holophrasts and later contracts them. As he expands,

the top of the display might be made to descend into the portion of

the text where the expansion occurred. As he contracts again, the top

of the display might move up the tree. This automatic view adjustment

90

feature was not implemented because it seemed difficult to define and

appeared to violate the principles of predictable behavior and display

Inertia. The result might be frequent user disorientation as he lost

the thread of his text.

Disorientation in fact occurs in the one context where Emily does

automatically adjust the display. When the interactive display facility

is requested to display the next instance of an identifier, it finds

the instance and displays it by ascending three levels in the tree.

(The number of levels can be set by the user at the console.) In practice,

this feature frequently leaves the user staring at a disembodied identifier

instance with no immediately apparent relation to the rest of the text.

This problem might be circumvented by implementing a mode in which holo

phrasts were specially highlighted if they met some criteria. Although

the criteria 'contains non-terminals' can easily be implemented with

the current system, it is difficult to see how to implement 'contains

a given identifier' in such a way as to generate the display fast enough.

When the Emily system was planned, the author and his advisor

expected the system to be useful for both the novice and the expert

programmer though for different reasons. The novice would be guided

in the construction of his program because the system would present

choices. He would not have to worry about syntax errors and could

concentrate on the structure of his algorithm. The expert might be

aided because he could work very rapidly and Introduce several char

acters into the finished text with each interaction. Novices who

91

have tried the system have had little difficulty becoming accustomed

to menu selection rather than text entry.

There are several problems for the expert. First is the unsult

abillty of the light pen as discussed in Chapter 4. Second, there is

an annoying extra level of interaction required to enter an identifier

into the text. When the current non-terminal is, say <ARITHX> (that

is, <arithmetic expression>), there is no difficulty in selecting an

arithmetic operator. With the Emily syntactic formalism, all arith

metic operations are direct rules for <ARITHX> and the system can

generate proper parentheses automatically. However, to replace

<ARITHX> with an identifier, the user must first select the rule giving

the identifier non-terminal, <ARITH>. Only then can he enter the

character string for the identifier or select an existing identifier

(from either the menu or the text).

The expert has another problem if he tries to copy an arithmetic

expression from notes or a textbook. There is a consistent tendency to

enter operations from left to right rather than parsing the expression

to determine its structure. One of the possible solutions was suggested

in Chapter 5: the syntax for arithmetic expressions can be a sequence

of operands separated by operators. Another solution is to specify in

the syntax that

<ARITHX> IS A CONSTANT

so the user always types in the entire arithmetic expression. A third

solution would be to allow keyboard entry for any non-terminal. The

92

system would then have to parse the entered text if it were to be

manipulated with the structure operations.

That the first two solutions can be implemented without modifica

tion to the current system demonstrates the flexibility of the Emily

syntactic formalism and syntax processor. This flexibility leads to

the use of Emily for an unexpected class of user, the language designer.

He can design a language without facing syntactic restrictions and can

Immediately create programs in that language. Without the effort of

learning the syntactic details of the language he can work through a

number of examples to see how the language will look and feel to a user.

Future Work with the Emily Concept

With the current cost of computer time and display devices, it is

difficult to justify Emily on an economic basis: but since Emily points

at a new form of information and a closer relation between man and

machine, and since computer costs are descending while human costs

are rising, it is appropriate to consider how the Emily concepts would

fit in a general interactive computer access system.

In such a system, it would be possible for an Emily-like system

to be the primary interface between the user and the system. Compilers

would not have to parse text and output routines could leave informa

tion in a tree structure rather than reducing it to character strings.

The syntax processor is an example of the possibilities of the Emily

data structure for compilation. Because the processor accesses the

file directly, it avoids the need to parse the text and avoids any

93

re

question of ambiguity. In addition to program text, an entire data

base might well be stored as an Emily tree. If high level titles were

well chosen, the text could easily be read and required information

extracted without excessive scanning. Statistical output and financial

statements are other examples of hierarchical information that could

be examined with Emily. For the programmer who uses a language without

labels, a trace and dump facility can be implemented that saves status

information in hierarchical structures (Dijkstra 1968b).

Better hardware may enhance an Emily oriented system. A critical

factor in the basic Emily interactive loop is the time required to dis

play the next set of productions. Moreover, a small number of production

sets generally account for a majority of the displays. Consideration

must be given to storing the most used production sets at the display

rather than transmitting them each time they are needed. This storage

could be accomplished with core memory at the display, but a more inven

tive solution is to combine a CRT and a computer controlled microfilm

display, either sharing one screen or mounted side by side. The micro

film would display invariant information while the CRT would be the

creative surface. Going further, a small computer controlling the

displays could handle the basic Emily text creation cycle. The main

computer would only manipulate structures and perform meta-functions.

As the system changes and technology improves, it will become

possible to locate consoles in the user's home as well as in his office.

The Emily system is based on the assumption that it is the user's primary

94

means of access to his data. This assumption can only be justified

if the user can access his data whenever he wants. For the author,

at least, this means nights and weekends as well as during 'office

hours.' A serious limitation to home consoles is that a large amount

of data must be displayed very rapidly. Current telephone lines can

handle only a few hundred characters per second while instantaneous

display modification requires at least tens of thousands. This capa

bility may soon become available with switchable cable television networks

and the telephone circuits for Picturephone^ transmission.

In addition to investigation of advanced hardware and further

exploration of software possibilities, the design of more effective

man-computer interfaces demands increased study of how people interact

with machines. Among the questions that must be answered are these:

What factors affect the success of any given feature in a given

system?

Exactly how fast can users transmit and receive requests?

How much information can a user retain in his mind?

What is the most convenient way for a user to request a particular

view of text?

Another question was that asked by D. Engelbart (1971): How can systems

be designed to match the specifications of specific classes of users?

The next research goal of the Emily project is to use the system

as a tool to help answer such questions. A user community can be

encouraged to use the system by adding interactive compilation and

execution. As they use the system, data can be gathered and stored

95

for later analysis. This analysis is somewhat easier than analysis of

typewriter text because Emily text manipulation follows the structure

of the text. In particular the level of detail at which the user is

studying text can be determined by analysis of the holophrasts in the

display. One hypothesis that can be studied is the supposition that

success with Emily is correlated to the user's spatial relations

ability. If true, this hypothesis points to one categorization of

users that must be taken into account in system design. Through such

studies the Emily system, while itself demonstrating a new user tool,

can contribute to the development of systems that will further narrow

the gap between man and machine.

96

7. Summary

The Emily text manipulation system allows a user to construct text

by selecting syntax rules rather than by typing text. One reason this

might be a good approach is suggested by the 'hierarchical hypothesis'

as outlined in Chapter 1. This hypothesis states that (at least some)

humans think in terms of hierarchical structures and that systems suited

to this mode of thought are more conducive to creative work than systems

supporting only strings of text. Hierarchical thinking appears in

many programming contexts: programming without labels, procedure modu

larity, tree data structures, outlines for documentation, syntactic

description. The basic Emily system was described in Chapter 2 and

the many additional features of the complete system were described

in Chapter 3. The advantages and disadvantages of the system are

summarized in Figure 7.1.

Any interactive system must be designed so as to maximize its

utility to the users. The principles behind this design in the Emily

system are called user engineering principles, as outlined in Chapter 4.

Two principles were basic to the design of Emily. The first of these,

'selection not entry', was followed in the basic Emily text construc

tion cycle and several other contexts in the system: file selection,

identifier and name selection, sub-operation selection, and even selec

tion of the level to which the display should ascend. The other

principle, 'predictable behavior', was employed consistently throughout

the system to make its behavior understandable in terms of a small set

of concepts that the user can perceive with a little practice.

97

Apriori Advantages

User cannot make simple syntax errors. (5)
System can manipulate text in anv syntax, even

if ambiguous. (5)
Neophytes are guided while building text. (6)
Experts require fewer keystrokes than when

typing text. (5)
User does not enter format characters (spaces

and carriage returns). (6)
Display automatically adjusts to a change in

view of text. (6)
Text display replaces flowcharts. (6)
User has flexible control of 'field of view'. (5)
System can provide an interactive cross reference

facility based on the block structure. (6)
User can modify text in terms of its structure,

rather than its character string representa
tion. (6)

Programs can be written to modify text in terms
of its structure. (3)

Unexpected Advantages

Valuable tool for language designers. (6)
Very flexible facilities for viewing text at

different levels of detail. (6)
List modification is especially helpful. (6)

Apriori Disadvantages

Text can only be manipulated in terms of its

structure. (6)

Emily is inconsistent with the PL/I macro
facility. (6)

Unexpected Disadvantages

Light pen is poor for selecting choices. (4)
Identifiers and fragment names migrate in the

menu. (4)
Emilv syntactic formalism will not

permit modification of the menu without
modifying the text structure. (5)

For PL/I, it is difficult to write a declara
tion syntax that will properly restrict
identifier classes. (5)

Attempts to provide shorthand menu selections
lead to too many choices. (5)

Extra menu selection usually required before
user can enter an identifier. (5)

Arithmetic expressions are difficult to copy
from handwritten notes. (6)

Identifier facility requires too much storage

and slows down more useful system features
(6)

Figure 7.1. Advantages and Disadvantages of Emily

Each comment is amplified further in the chapter noted in parentheses.

Complete understanding of the capabilities of Emily requires

detailed knowledge of the formalism employed to describe the syntax

of a programming language. This formalism has been described in

Chapter 5 and contains three features not found in ordinary BNF-like

formalisms. Identifiers and block structure are described in the for-

ijialism so the system can keep track of all references to identifiers.

Indentation and carriage returns are specified in the syntax so the

system can automatically format the display. Finally, to provide

automatic parenthesizatlon of arithmetic expressions and to provide

more flexible display formatting, the syntax permits conditional dis

play operations. Conditions that can be tested include the contents

of any subnode of a node and the identity of the father of the node.

The experience gained from implementing and using Emily is related

in the sixth chapter. The design of the system followed the hierarchi

cal hypothesis in procedure modularization, design of the data structure,

and avoidance of labels. An experiment comparing Emily with a type

writer based text editor showed that constFuction of a simple text

took somewhat longer with Emily, but the user made fewer mistakes.

The mistakes when using the typewriter seemed to stem from the greater

effort at concentration required to ensure correct syntax. Chapter 6

closed with several possibilities for extension of this work. Emily

can be particularly instrumental in statistical analysis to determine

the characteristics of users.

99

I Kzad my itnttnce. it&acLitu,

V.zvime.d iZ w-ith my zyu,

To <5ee that I made no mlitakz

In iti: zxtAemut c i ao ie . . ,

Emily Dickinson

100

Appendix A. Program Function Keyboard

Layout as seen by user:

IBM PART NO. 57Ĉ ;3G

MONITOR SET V^.ySYMPATHY ^ NOTE

A 1 B 2 C 3

NEXT REF
D 4

'r'\ C ,)
NEXT DCL
J +

V. y
PFKB MENU

P ,

'T^ V J
EXP +1
V =

T'""! ^ J

PICKID
E 5

y"^ C)
SHOW DCL

K -

y) y y
IN
Q ,

T'^
'yy
EXP +7
W <

? ^
I /
^̂ y

PICK FR
F 6 r^ C)

OUT BLK
L *

1?.' .̂

()
\^_^'

OUT
R ;

T^ \^j
DEL EL
X >

?•""•) V J

RECALL
G 7

T^
'..)
SAVE
M /

(' ^

v-,̂ y
MOVE
S :

y-
INAFT
Y -«

25.- -v̂

()
V y

UNSTACK
H 8

?' ^ 'v J
STACK
N (

r ̂
V_ y

COPY

T 1

7: "-,
y_J
DELETE Z &

' • ^

\ ./.

SHOW ERR
I 9

9 ,r
I
I

EDIT FR
0)

MORE
U sp.

CNTRCT_
backspace
27 ••' ' X

END
_ . S h i f t s
ALPHA ' NUM NORMAL

SIE^

101

Button Function

0 MONITOR - Options for file handling.
1 SET - Set character size, holo text length, and other

parameters.
2 SYMPATHY - Emily responds with a sympathetic message.
3 NOTE - The user can enter a note in the off line listing of

interactions.
4 NEXTREF - Display the next reference to the current identifier.
5 PICKID - Pick identifier to be current.
6 PICKFR - Pick fragment to look at instances of current

identifier.
7 RECALL - Restore display status to status saved under a name.
8 UNSTACK - Restore display status to status saved on top of

stack.
9 SHOWERR - Show number of last user error.
10 NEXTDCL - Display next declaration of current identifier.
11 SHOWDCL - Stack display status and display declaration of

selected identifier.
12 OUTBLK - Ascend in tree structure so top display node is next

outer block.
13 SAVE - Save current display status under a name.
14 STACK - Save display status on top of stack.
15 EDITFR - Pick named fragment to edit.
16 PFKB MENU - Set mode so that Program Function buttons select

items from menu.
17 IN - Top of display descends to indicated sub-node.
18 OUT - Display ascends to Indicated super-node.
19 MOVE - Move a holophrast, identifier, or non-terminal.
20 COPY - Copy a holophrast, identifier, or non-terminal.
21 MORE - Present eighteen more options in menu (if there are more

than eighteen choices in current set of options).
22 EXP+1 - Reset automatic holophrast expansion; increment it by

one.

23 EXP+7 - Reset automatic holophrast expansion; increment it by
seven.

24 DELEL - Delete an element from a list.
25 INAFT - Insert an element in a list.
26 DELETE - Holophrast or identifier is converted to corresponding

non-terminal.
27 CNTRCT - Contract indicated node to a holophrast.
28 END - Indicates end of entering text string (equivalent to EOT

on alphanumeric keyboard).
29 ALPHA Shift - Set mode so Program Function buttons enter

alphabetic characters in message area (lower left symbol
on button).

NUM Shift - Similar to 29, but enters digits and special
characters (lower right symbol).

31 NORMAL - Escape button. This button can be pushed at any time
to return the system to the standard walt-for-command state.

102

30

Appendix B. Emily Syntactic Formalism

The Emily system is syntax controlled. This means that the struc

ture of a language must be described to the system before texts can be

generated in that language. For the system, this description must be in

the form of several integer arrays and a large character string. To

generate this information, the system includes a starter syntax and a

syntax processor. The starter syntax describes the same language as

that described by the text in this appendix. The syntax processor

accepts as input an Emily text in this language and generates appropriate

internal syntax tables.

The generation of the text in this and the next two appendices can

be described as follows:

1) The starter syntax was written down and translated by hand

into internal tables.

2) The text in this Appendix was created using the language

defined by the starter syntax. •

3) The syntax processor was invoked to generate internal tables

for the language defined in step 2. (Same language as that

defined by starter syntax.)

4) The text in Appendix C (PL/I syntax) was created using the

tables generated in step 3.

5) The syntax processor was invoked to generate internal tables

for the language defined in step 4. (PL/I)

6) The text in Appendix D (FIND_ID) was created using the tables

generated in step 5.

103

As a syntax, the text in this appendix has fifty-five syntax rules

and twenty non-terminal symbols. The internal representation of this

text occupies 10243 bytes with 2452 of these required for 78 references

to 23 distinct identifiers. If the text were stored as a character

string with no redundant blanks, it would occupy only 1623 bytes, but

if it were stored as card images, it would be 7280 bytes.

104

SYNTAX FOfi SYNTAXES

<SYNCEF> IS CUTER N-T

<SYNDEF> : <TITLE> M ? NL •<• <NT> •> IS CUTER N-T' NL? NL <PR/*/NL-'>
M ? <PRINTSFEC/*?/NL?>

PROOLCTICNS

<PR> : •<< <NT/DECL> •>• INDENT+6 <RHS/*/NL?>
•<• <NT/CECL> •> IS A CONSTANT'
NL <TITLE> NL? INDENT*3 NL <PR/*/NL?> NL? <PRINTSPEC/*?/NL?>
'<• <NT/CECL> '> IS AN ID'

<RHS> : • : • INDENT+6 <ITEM/*/' •>
BLOCK • INOENT+6 <ITEM/*/» •>
(• <LABEL/DEC-L> ') ' INOENTtS <ITEM/*/» '>
(' <LABEL/DECL> ') BLCCK ' INDENT<-6 <ITEM/*/'

<PRINTSPEC> : •<• <NT> •*>' INOENT+6 <RHS>
<TITLE> IS AN ID

'>

ITEMS

FIRST EIGHT

<ITEM> : '<' < M > '>•
'<' < M > •/' <STAR> •>•
'<• <NT> '/DECL>'
•<' <NT> '/DECL/' <STAR>
' " <STRING> " •
• INDENT'
•NL?'
'XIT'

<INDENT>

SECOND EIGHT

<ITEM> : 'IFT (' <ITEM/*/' '> ') '
•IFF (' <ITEM/*/' •> •) •
•SND' <SNDNO> '=(' <LABEL> ') "
•SND' <SN0NO> • IN (• <LABEL>
'DAD=(• <LAeEL> ')'
' IFTXIT'
' IFT()'
'NOT'

'-< <LABEL> ') '

THIRD EIGHT

<ITEM> : 'LIST'
•NL'
'SND' <SNCNC>
•OPTH^ <CEPTH>
'TAB'
•TABS (' <TAB/*?/'T
•MVRT' <INOENT>
•COL' <CCLNO>

•> ') '

FOURTH SEVEN

<ITEM> : 'SNCM' <SNDNO>
'SNDHCLC <SNDNO>
•SNDNT' <SNDNC>
•CPTH>' <CEPTH>
•CCL<' <CCLNO>
'TRUE'
•FALSE'

<STAR> : •*?'
• ••
•*?/•• <STRING> " '
'*/'• <STRING> '''
'*?/' <ITEM/*/' •>
•*/• <ITEM/*/' '>
<*?/(' <LABEL> ') '
' * / (• <LABEL> ') *•

SPECIAL NCN-TERKINALS

<NT> IS AN IC
<LABEL> IS AN
<STRING> IS A
<INOENT> IS A
<CEPTH> IS
<SNDNC> IS

IC
CCNSTANT
CONSTANT

A CONSTANT
A CONSTANT

<COLNC> IS
<TAB> IS A

A CONSTANT
CONSTANT

Appendix C. Emily Syntax for PL/I

To aid in understanding the organization of the PL/I syntax, the

following is a view of the syntax that can be displayed on the 2250

screen. In this view, the length of holophrasts is set to sixteen so

the titles are not cut too short.

!PR:PROCEDURE SYNTAX!
!PR:STATEMENT SYNTAX!

DECLARATIONS

!PR:DATA DECLARATION!
!PR:INPUT OUTPUT DEC!
!PR:PROGRAM CONTROL !

EXPRESSION SYNTAX

!PR:GENERAL <ARG> : !
!PR:ARITHMETIC EXPRE!
!PR:BIT EXPRESSIONS !
!PR:CHARACTER EXPRES!
!PR:POINTER EXPRESSI!

!PR:IDTYPES <AREA> !

This PL/I syntax is the largest text that has so far been generated

with Emily. The internal representation occupies 65825 bytes of which

14596 are required for 598 references to 100 identifiers. If the text

were stored as a string, it would require 11351 characters, exclusive

of redundant blanks. The printed text occupies 556 lines, so it would

require 44480 bytes if stored in card image form.

As an (abbreviated) description of PL/I, this syntax has 336 rules

and 102 non-terminal symbols. Of the latter, eleven are Identifiers,

twenty-one are constants, and the rest have rules specifying replace

ments . •

108

PL/I SYNTAX

<PRGC> IS OUTER N-T

PROC INDENT+4 <PROC BGDY> INDENT+0 NL? •

PROC INDENT+4 <

PROCEDURE SYNTAX

<PROC> : <ENTRY^^'/OECL>
END • SNDl ';'

: <ENTRYNN/CECL> <ENTRYNM/DECL/*?/{MULTOCL)>
PROC BCDY> INDENT+0 NL? 'END ' SNDl ';'

<PROC eODY> : BLCCK SNDI^Tl IFF (• ') <PROC OPT/*?/'
CCMCENT) • */' NL? <STMT/*/NL?>

<FROC CPT> : •(• <PARM/*?/', •> •) '
<DATA ATTR>
'RECURSIVE'
'CPTIONS (MAIN)•
•OPTIONS <TASK)^
'CPTIONS (MAIN, TASK),'

<PARM> : <ARITH>
<BIT>
<CHAR>
<PTR>
<STRUCT>
<ENTRYN^>
<AREA>
<EVENT>
<LABEL>
<TASK>
<FILENM>

<ENTRYNM> IS AN IC
<COMMENT> IS A CONSTANT
<ENTPYNM*> : (MULTCCL) ':

• NL? ' / * • <

<ENTRYNM> L I S T < E N T R Y N M / D E C L / * ? / (M U L T D C L) >

STATEMENT SYNTAX

<STMT> '/* CCL20
NL •/•
<ASGN STM
•DECLARE
NL <PROC>
'CALL ' I
(OOEND) '
'DO WHILE

NL? '
•DO ' IND

INDENT
'DO ' IND

NL? <S
(IFTHEN)

NL?) I
•IF ' IND

INDENT
STMT>

•RETURN;'
•RETURN (
•ALLOCATE
•FREE ' I
<I/0 STMT
BLOCK 'CN

NL? '

• ; '
• E X I T ; •
•DECLARE
'DECLARE
MVRT-3 <L
•GO TO

• <C0MMENT> • • / '
<CCMMENT> • • / • NL NL
T>
• INOENT+4 NL? <DATA D C L / * / ' , ' NL?> ' ; '

NL
NDENT+4 <ENTRYNM> SNCMT2 NOT I F T () < A R G / * ? / ' , •> ' ; '
D C ; ' INDENT+4 NL? < S T M T / * / N L ? > INOENT+0 NL? ' E N D ; '

(• INDENT+8 <BITX> ') ; ' INDENT+4 NL? < S T M T / * / N L ? > INOENT+0
END; '
ENT+8 <VAR> ' = • <D0 S P E O ' ; ' INDENT+4 NL? < S T M T / * / N L ? >
+0 NL? ' E N C ; '
ENT+e <ARITHV> ' = • <ARITHX> • TO ' <ARITHX> • ; • INDENT+4
T M T / * / N L 7 > INOENT+0 NL? • E N D ; '
' I F ' INDENT+8 <B ITX> ' THEN ' SND2=(D0END) I F F (I N D E N T + 4
FT (INDENT+0) <STMT>
ENT+8 <B ITX> ' THEN • SND2=(D0END) IFF (INDENT+4 NL?) IFT (
+ 0) <STMT> SND2=(IFTHEN) I F T (NL? • E L S E ; ') INDENT + 0 NL? 'ELSE ' <

' INDENT+4 <EXPR> ') ; •
' INDENT+4 <ALLCC I T E M / * / ' , • > ' ; •

NDENT+4 <FREE I T E M / * / ' , • > • ; '
>

' < C 0 N D I T I 0 N > ' B E G I N ; ' INDENT+4 NL? < S T M T / * / N L ? > INDENT+0
END; / * CN UNIT * / •

' INDENT+4 < F I L E C C L / * / ^ , • > • ; •
• INDENT+4 <ENTRY O C L / * / ^ , • > ' ; •
ABEL/DECL> ' : •
<LABEL> • ; •

<C0 SPEO : <EXPR>
<EXPR> ' TC • <EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>
<EXPR>

BY • <EXPR>
TC • <EXPR> • BY • <EXPR>
WHILE(« <BITX> ') •
TC • <EXPR> ' WHILE! • <BITX>
BY • <EXPR> • WHILE(' <BITX>
TO ' <EXPR> ' BY ' <EXPR>

<D0 SPEO <C0 SPEC/*/', •>
<ASGN STMT> : <ARITH> • = • <APITHX> •;•

: <ARITHV> • = • <ARITHX> •;'
: <VAR> ' = ' <EXPR> •;•
: <VAR/*/«, •> • = • <EXPR> •;'
: <BITV> • = • <BITX> •;•
: <CHARV> • = • <CHARX> ';'
: <PTRV> • = • <PTRX> ';'

) •
) •

WHILEC <BITX> •) •

STATEMENT OPTIONS

<ALLCC ITEM> : <STRUCT>
: <STRLCT> ' IN (' <ARE4>
: <STRUCT> ' SET (' <PTR>
: <STRLCT> ' IN (• <4REA>

<FREE ITEM> : <STRUCT>
: <PTR> •->' <STRUCT>
: <STRLCT> • IN {' <AREA> ') '

SET (' <PTR> •)

<PTR> •->• <STRUCT> • IN (• <AREA> •) '

I/O STATEMENTS

<I/C STMT> : 'GET • INCENT+4 <GET OPT/*/'
: 'PUT ' INDENT+4 <PUT OPT/*/' •>
: <OTHER I/0>

<GET OPT> : 'FILE (• <FILENM> ') '
'STRING (' <CHAR> •) '
'LIST (• <GET VAR/*/', '> ') '
'DATA (• <GET VAR/*/', •> ')
'EDIT (• <GET VAR/*/', '>
•SKIP'
'COPY'

<PLT OPT> : 'FILE (' <FILENM> •) •
'STRING (' <CHAR> ') '
•LIST (' <PUT EXPR/*/', '> ') '
'DATA (' <PUT EXPR/*/', •> ') '
'EDIT (' <PUT EXPR/*/' , '> ')
'SKIP'
'COPY'

<OTHER I/0> IS A CONSTANT
<FCRMAT ITEM> IS A CONSTANT
<GET VAR> IS A CCNSTANT
<PUT EXPR> IS A CCNSTANT

<CONDITICN> IS A CCNSTANT

) (' <FORMAT ITEM/*/', '> ') '

(' <FORMAT ITEM/*/',

DECLARATICNS

CATA DECLARATIONS

<DATA OCL>
<BIT
<CHA
<PTR
<ARE
<CTL
' ('
NL?

<
<STRUCT OCL>

: <LEV
: <LEV

<ARITH

: <LEV

*
: <LEV
ATTR>

'FLC
'FIX
•FLC
• (•
• ('
•REA
'COM
'PIC
• (
<STO
• INI
' INI
'ALI
'UNA
'DEF

S

<ARITH
/CECL>
P/DECL
/DECL>
A/DECL
CCL>

<CATA
'1 ' <
STRUCT
: <LEV
EL> •
EL> •
• NL?>
EL> '
/• , • N
EL> •
: 'FIX
AT BIN
ED DEC
AT DEC
<PRECI
<PRECI
L'
PLEX'
TURE •
<BCUND
RCL>
TIAL (
TIAL C
GNED'
LIGNED
INEO •
NDMT3

/OECL> SN0MT2 IFF (' •) <ARITH ATTR/*?/' •>
SNDMT2 IFF (• •) <BIT ATTR/*?/^ •>

> SNDMT2 IFF (• •) <CHAR ATTR/*?/^ •>
SNDMT2 IFF (• •) <PTR ATTR/*?/' •>

> ' AREA (' <SIZE> ') • SN0MT3 IFF (' ') <STORCL/?>

DCL/*/', '> ') ' SN0MT2 IFF {' •) <DATA ATTR/*?/' •>
STRUCT/DECL> SNDMT2 IFF (' ') INDENT+4 <STORCL/?> ',' NL?
DCL/*/',' NL?>

EL> ' • <CATA OCL>
' <STRUCT/DECL> ',' INDENT+4 NL? <STRUCT DCL/*/',' NL?>
' <STRUCT/CECL> 'ALIGNED' «,' INOENT+4 NL? <STRUCT DCL/*/'

' <STRUCT/DECL> 'UNALIGNED' ',' INDENT+4 NL? <STRUCT DCL/
L?>
' <STRLCT/DECL> • LIKE • <STRUCT>
ED BIN'

SON> •)'
SON> ', • <SCALE> •) •

• <PICTURE> ' "
S/*/', •> ') '

' <NUMBER/*/', •> •) •
ALL • <ENTRYNM> SNDMT2 NOT I F T O <ARG/*?/^, •>

<PARM> SN0MT2 IFF (' ') NOT I F T O <OEF SUBS/*?/', •>
IFTXIT • POSITION (• CPOSITiaN/?> ') '

<BIT ATTR> : 'BIT
•VAR'
'(' <BCUN
<STORCL>
•INITIAL
• INITIAL
•ALIGNED'
•UNALIGNE
'DEF INED

SNDMT3
<CHAR ATTR> : 'CHA

•VAR'
'(• <BOUN
<STOPCL>
•INITIAL
' INITIAL
'ALIGNED'
•UNALIGNE
•DEFINED

SNDMT3
<PTP ATTR> : 'PTR'

'OFFSET (
•(• <BOUN
<STCRCL>
• INITIAL
'INITIAL
'ALIGNED'
•UNALIGNE
'DEFINED

SNDMT3

(• <LENGTH> •) •

DS/*/^ , •> ')'

(' <BIT STRING/*/(BITS)> ') '
CALL ' <ENTRYNM> SNCMT2 NOT IFTO <ARG/*?/', '>

' <PARM> SN0MT2 IFF (' ') NOT IFTO <DEF SUBS/*?/', '>
IFTXIT • POSITION (' <POSITION/?> •) '

R (• <LENGTH> ') '

OS/*/' , •> ') '

(' <CHAP STR/*/(CHARS)> ') '
CALL ' <ENTRYNM> SNDMT2 NOT IFTO <ARG/*?/', •>

' <PARM> SNDMT2 IFF (' ') NOT IFTO <OEF SUBS/*?/', '>
IFTXIT ' POSITION (• <POSITION/?> ') •

• <AREA> •) •
DS/*/', •> ') '

(' <CCNSTANT/*/', •> •) •
CALL • <ENTRYNM> SN0MT2 NOT IFTO <ARG/*?/^, •>

• <PARM> SNDMT2 IFF (• •) NOT IFTO <DEF SUBS/*?/^, •>
IFTXIT ' POSITION (' <POSITION/?> ') •

<DATA ATTR> : 'FIXED BIN*
•FLOAT BIN*
•FIXED DEC
'FLOAT CEC
'(' <PRECISON> ') •
•(' <PRECISON> ', ' <SCALE> ') •
'REAL'
'COMPLEX'
'PICTURE •' <PICTURE> '"
•BIT (• <LENGTH> ') '
'CHAR (' <LENGTH> ') •
•VAR'
•PTR'
'OFFSET (' <AREA> •) '
•(' <BCUNOS/*/', '> ') '
<STORCL>
'INITIAL (• <CCNSTANT/*/', •> ') '
•INITIAL CALL ' <ENTRYNM> SNDMT2
•ALIGNED'
'UNALIGNED'
'DEFINED • <PARM> SNDMT2 IFF (' '

SNDMT3 IFTXIT ' POSITION (
<STCRCL> : 'ALTO*

'BASED (• <PTR> ') '
'STATIC INT'
'STATIC EXT'
'CTL INT*
•CTL EXT'

<BCUNOS> : <HBOUNC>
: <LBOUND> ':' <HBCUND>

NOT IFTO <ARG/*?/' , '>

' •) NOT IFT()
<POSITION/?> '

<DEF
)'

SUBS/*?/', '>

ID TYPES

<CCNSTANT> IS A CONSTANT
<H8CUN0> IS A CONSTANT
<LBCUND> IS A CONSTANT
<LENGTH> IS A CONSTANT
<LEVEL> IS A CCNSTANT
<PICTURE> IS A CONSTANT
<POSITION> IS A CONSTANT
<PRECISCN> IS A CONSTANT
<SCALE> IS A CCNSTANT
<SIZE> IS A CCNSTANT
<OEF SUBS> IS A CONSTANT

<8IT STRING*> : (BITS) ''• <BIT S T R I N O " B ' LIST
BITS)>

<BIT STRlNG/*/(

<CHAR S T R * > (C H A R S) ' ' • <CHAR S T R > " ' L I S T • <CHAR STR/*/(CHARS)>

INPUT CLTPLT DECLARATIONS

<FILE DCL> : <FILENM/CECL> ' FILE' <FILE ATTR/*?/' '>

<FILE ATTR> IS A CONSTANT

PROGRAM CONTROL CCL'S

<ENTRY DCL> : <ENTRYNM/CECL> ' ENTRY'
<CTL OCL> : <LAB£L/OECL> ' LABEL' SN0MT2 NOT IFT() <LABEL/*/', '>

: <EVENT/CECL> ' EVENT'
: <TASK/CECL> ' TASK'

EXPRESSION SYNTAX

GENERAL

<ARG>

<EXPR>

<V*R>

<ARIT
<BIT
<CHA
<ARE
<ENT
<EVE
<FIL
<LAB
<PTR
<TAS
<STR
<ARI
<BIT
<CHA
<PTR
<VAR

<AREA
<ARI
<BIT
<CHA
<EVE
<LAB
<PTR
<STR
<TAS

HX>
X>
RX>
A>
RYNM>
NT>
ENM>
EL>
X>
K>
LCT>
THX>
X>
RX>
X>

>
THV>
V>
PV>
NT>
EL>
V>
LCT>
K>

ARITHMETIC EXPRESSIONS

<ARITHX>

<ARITHV>

<ARITH>
<ARITHV>
<NUMBER>
' (' <ARIT
'+' SNDl
'-' SNDl
(BIT) ' (•
(CHAP) •(
(ADD) <AR
(SUB) <AR
(MUL) SND

ARITHX
(DIV) SND

ARITHX
(POW) SND

<ARITH
: <ARITH>
<ARITH> •

<STRLCT/*
<STRLCT/*
<ENTRYNM>
<ENTRYNM>
<PTR> •->
<STRUCT/*
<PTR> '->
<STRUCT/»
<PTR> •->
<STRUCT/*
<PTR> '->
<STRUCT/*

ARITHX

HX> ') '
IN (ACD-PCW) IFT() <ARITHX>
IN (ADD-POW) IFT() <ARITHX>
<B ITX> ') •
' <CHARX> ') '
ITHX> ' + • <ARITHX>
ITHX> ' - ' SND2=(AD0) IFT() <ARITHX>
1 IN (ADD-SUB) IFT() <ARITHX> '*' SN02 IN (ADD-SUB) IFT() <
>
1 IN (ACD-SUB) IFT() <ARITHX> '/• SN02 IN (ADD-MUL) IFT() <
>
1 IN (ACO-CIV) IFT() <ARITHX> ••*• SND2 IN (ADO-OIV) IFT()
X>

<ARITHX/*/^, '

' > • . ' <ARITH>
' > ' . ' <ARITH>

')

(• < A R I T H X / * / ' ,

• > •) (' < A R G / * / ' ,
<ARITH>
. ' > ' . ' <PTR> • - > ' <ARITH>
< S T R U C T / * / ' . ' > ' . ' <ARITH>

/ ' . • > ' . ' <PTR> ' - > • < S T R U C T / * / ' • • > ' . ' <ARITH>
' <ARITH> ' (' < A R I T H X / * / ' , • > •) '
/ ' . ' > ' . ' <PTR> ' - > ' <ARITH> ' (
' < S T R U C T / * / ' . ' > ' . • <APITH> • (
/ • • • > ' . ' <PTR> ' - > • < S T R U C T / * / '
/ • / • , • > •) '

< A R I T H X / * / ' , ' > •) •
< A R I T H X / * / ' , ' > ') '
> ' . ' <ARITH> • (' <

BIT EXPRESSIONS

<Bnx>

<BITV>

<BIT
<BIT
I f f

' (•
• (•
•(•
(REL
SNDl
<CHA
<PTR
<PTR
(NOT
(AND
(OR)
<BIT
<BIT
<STR
<STR
<ENT
<ENT
<PTR
<STR
<PTR
<STR
<PTR
<STR
<PTR
<STR

*

V>
<BIT S T R I N O ••B'
<6ITX> ' } '
<ARITHX> ') •
<CHARX> •) '
) <ARITHX> <RELOP> <ARITHX>
IN (AND-OR) IFT() <BITX> <RELOP> SND2 IN (ANO-OR)

RX> <RELOP> <CHARX>
X> ' = ' <PTRX>
X> ' ^= ' <PTRX>
> ' -' SNDl IN (REL-CR) I F T O <BITX>
) SND1 = (0R) I F T O <eiTX> ' 6 ' SND2=(0R)

< B I T X > ' 1 • < B I T X >
>
> ' (' < A R I T H X / * / ' , ' > ') •
L C T / * / ' . ' > • . ' < B I T >

. • > ' • • < B I T > ' (' < A R I T H X / * / ' ,

I F T O < B I T X >

I F T () < B I T X >

•> ') ' U C T / * / '
PYNM>
PYNM> • (' < A R G / * / ' , ' > •) '
> ' - > ' < B I T >
L C T / * / ' . ' > ' . ' <PTR> ' - > ' < B I T >
> ' - > ' < S T R U C T / * / ' . ' > ' . ' < B I T >
L C T / * / ' . ' > ' . ' <PTR> ' - > ' < S T R U C T / * / ' . • > • . ' < B I T >
> ' - > ' < B I T > ' (' < 4 R I T H X / * / ' , ' > ') '
L C T / * / ' . ' > ' . ' <PTR> ' - > ' < B I T > ' (' < A R I T H X / * / ' , •
> • - > ' < S T R U C T / * / ' . ' > ' . ' < B I T > ' (' < A R I T H X / * / ' , '
U C T / * / ' . ' > ' . ' <PTR> ' - > ' < S T R U C T / * / ' . ' > ' . ' < B I T >
/ ' , •> ') '

' (• < A R I T H X /

<RELCP> : • = •
I ^ : = t

' < '
' -.< •
• > •
I - . > •
P > = 1

1 < = •

< B I T S T R I N O IS A CONSTANT

CHARACTER EXPRESSIONS

')

<CHARX> : <CHAR>
<CHARV>
' • • <CHAR STR> • • •
<CHARX> ' I I ' <CHARX>
' { • <ARITHX> •) •
• (• < B I T X > ') '
• S U B S T R C <CHARX> ' , • <APITHX> ' , ' <ARITHX> ') '
' I N D E X C <CHARX> ' , ' <CHARX> ') '

<CHARV> : <CHAR>
<CHAR> ' (' < A P I T H X / * / ' , ' >
< S T R L C T / * / ' - ' > ' . ' <CHAR>
< S T R L C T / * / ' . ' > ' . ' <CHAR> '
<ENTPYNM>
<ENTRYNM> ' (' < A P G / * / ' , • >
<PTR> ' - > ' <CHAR>
< S T R L C T / * / ' . ' > ' . ' <PTR> ' - > ' <CHAR>
<PTR> ' - > • < S T R U C T / * / ' . ' > ' . ' <CHAR>
< S T R L C T / * / ' . ' > ' . ' <PTR> ' - > ' < S T R U C T / * / '
<PTR> • - > • <CHAR> • (• < 4 R I T H X / * / ^ , • > •)
< S T R L C T / * / ' . ' > ' . ' <PTR> • - > ' <CHAR> ' ('
<PTR> ' - > ' < S T R U C T / * / ' . ' > ' . ' <CHAR> • ('
< S T R L C T / * / ' . ' > ' . ' <PTR> ' - > • < S T R U C T / * / '

/ * / • , • > •) •
<CHAR STR> IS A CONSTANT

(• < A R I T H X / * / ^ , • > ') '

') •

, •> • . ' <CHAR>
I

< A R I T H X / * / ^ , • >
< A R I T H X / * / ' , ' >

, •> ' . ' <CHAR> '
') '
(' <ARITHX

POINTER EXPRESSIONS

<PTPX>

<PTRV>

: <PTR>
: <PTRV>
: 'NULL'
: <PTR>

<PTR> ' (' <
<STRLCT/*/'.
<STRLCT/*/'.
<ENTPYNM>
<ENTPYNM> •
<PTR> •->' <
<STRLCT/*/«.
<PTR> •->' <
<STRLCT/*/'.
<PTP> '->' <
<STRUCT/*/'.
<PTR> •->• <
<STRLCT/*/^.

*/•, •> '

ARITHX/*/', >
•> '.' <PTR>
•> ' .' <PTR>

)•

• (• <ARITHX/*/', '> ') •

(' <ARG/*/', '> ') '
PTR>
•> • .« <PTR> •->' <PTR>
STRUCT/*/'.'> '.' <PTR>
'> '.' <PTR> •->• <STRUCT/*/^.•> '.' <PTR>
PTR> ' (' <ARITHX/*/', '> «) •
•> '.' <PTR> '->' <PTR> • (• <ARITHX/*/^, •>
STRUCT/*/' .•> '.' <PTR> ' (' <ARITHX/*/', •>
'> '.' <PTR> '->« <STRUCT/*/'.•> '.' <PTR> •
) '

•) •
(' <ARITHX/

IC TYPES

<AREA> IS AN ID
<ARITH> IS AN ID
<BIT> IS AN ID
<CHAR> IS AN ID
<EVENT> IS AN ID
<FILENM> IS AN IC
<LABEL> IS AN IC
<NUMBER> IS A CCNSTANT
<PTR> IS AN ID
<STRUCT> IS AN IC
<TASK> IS AN ID

Appendix D. PL/I Program Created with Emily

The procedure FIND_ID listed in this appendix represents the algor

ithm used for storing and locating identifiers within the Emily system.

The pointer SYMBOLS points at an ordered sequence of IDND's, chained on

the IDNEXT field. Each element of the array CHAINHD contains a pointer

to the pointer at the first identifier with some given initial letter.

The text given contains the two errors generated during the console

session; both are in the section 'CHECK TO SEE IF ITS THERE'. The

greater-than should be a less-than, and the next two statements should

be surrounded by 'ELSE DO;' and 'END'.

The tree representation of FIND_ID requires 9072 bytes, including

3037 bytes for 112 references to 24 identifiers. Without redundant

blanks, this text would occupy 1742 bytes as a character string. If

stored on cards, it would occupy 79 cards or 5320 bytes.

122

FIND.IO: PROC (ID) PTR;
/* LOCATE ID IN SYMBOL TABLE */

/* RETURN PTR TO IT */
CECLARE

IC CHAR (32) VAR;

/* DEFINE SYMBOL TABLE */

CECLARE
SYMBOLS PTR STATIC EXT,
CHAINHD <27) PTR STATIC INT,
1 ICNCDE BASEC (IDP),

2 (IDTYPE, IDLEN) FIXED BIN,
2 (IDNEXT, IDATTR) PTR,
2 IDCHAPS CHAR (NREF REFER (IDLEN)),

ICP PTR,
NREF FIXED BIN,
FIRST_TIME BIT (1) STATIC INT INITIAL C l ' B) ;

CECLARE
(FREVPTR, CLRRPTR) PTR,
PTRPTR PTR BASEC (PREVPTR),
CHAINNO FIXED BIN,
TC CHAR (1);

IF FIRST_TIME THEN CO;
SYMBOLS = NULL;
CO CHAINNO ^ I TO 27;

/* INIT TC PTR AT CHAIN */
CHAINHC (CHAINNO) = ACDR (SYMBOLS);

ENC;
FIRST_TIME = ' O ' B ;

END;
IF LENGTH (ID) = 0 THEN

RETURN (NULL);
DO;

/* FIND PROPER CHAIN */
TC = SUBSTRdC, 1, 1) ;
IF TC < 'A' THEN

CHAINNC ^ 1;
ELSE IF TC -> 'I' THEN

CHAINNO = 2 + UNSPEC (TC) - UNSPEC C A ') ;
ELSE IF TC < 'J^ THEN

CHAINNC = 1;
ELSE IF TC -> 'R^ THEN

CHAINNC = 11 + UNSPEC (TC) - UNSPEC C J ') ;
ELSE IF TC < 'S' THEN

CHAINNC = 1;
ELSE IF TC -> 'Z' THEN

CHAINNC = 2C + UNSPEC (TC) - UNSPEC C S ') ;
ELSE CHAINNC = 1;

END;

DO;
/* CHECK TO SEE IF ITS THERE */

PREVPTR = CHAINHD (CHAINNO);
CUPPPTR = PREVPTR->PTRPTR;
DC WHILE (CURRPTR -.= NULL);

IF LENGTH (ID) = CUPRPTR->IDLEN THEN
IF ID = CURRPTR->ICCHARS THEN

RETURN (CURRPTR);
IF ID > CURRPTR->IOCHARS THEN

CURRPTR = NULL;
PREVPTR = ACOP (CURRPTR-XDNEXT) ;
CURRPTR = PREVPTR->PTRPTR;

END;
END;

/* MAKE A NEW IDENTIFIER NODE */

END

NREF = LENGTH (IC);
ALLOCATE IDNODE SET (CURRPTR);
CURRPTR->ICTYPE = ICTYPE#;
CUPRPTR->IDCHARS = ID;
CUPRPTR->IDATTR = NULL;
CURRPTP->IDNEXT = PREVPTR->PTRPTR;
PREVPTR->PTRPTR = CLRRPTR;
DO CHAINNO = CHAINNC + 1 TO 27 WHILE(CHAINHD (CHAINNO)

CHAINHD (CHAINNO) = ACDR (CUPRPTR->IDNEXT);
END;
RETURN (CURRPTR);
FIND.ID:

PREVPTR);

References

The bracketed numbers indicate the page where the paper is referenced.

(Backus, 1959) Backus, J. W., 'The Syntax and Semantics of the Proposed

International Algebraic Language of the Zurich ACM-GAMM Conference.'

Prcc, International Conf. on Information Processing, UNESCO, 1959,

pp. 125-132. [1, 15]

(Bbhm and Jacopini, 1966) BBhm, C. and G. Jacopini, 'Flow Diagrams, Turing

Machines and Languages with Only Two Formation Rules.' Comm. ACM 9

(May, 1966), pp. 365-371. [7]

(Bratman, 1958) Bratman, Harvey, Hiram G. Martin, and Ellen C. Perstein,

'Program Composition and Editing with an On-line Display.' AFIPS

Proc. V. S3 pt. 2 (FJCC), 1968, pp. 1349-1360. [8]

(Bush, 1945) Bush, Vannevar, 'As We May Think.' The Atlantic Monthly,

(July, 1945), pp. 101-108. [8]

(Carmody, 1968) Carmody, Steven, Theodor H. Nelson, David Rice, and

Andries Van Dam, A Hypertext Editing System for the /360. Brown

University, October, 1958 (unpublished). [9]

(Cameron, 1957) Cameron, Scott H., Duncan Ewlng, and Michael Liveright,

'DIALOG: A Conversational Programming System with a Graphical

Orientation.' Comm. ACM V. 10, 6 (June, 1957), pp. 349-357. [8]

(Dijkstra, 1968a) Dijkstra, E. W., 'GO TO Statement Considered Harmful.'

(Letter to the editor) Comm. ACM 11, 3 (March, 1958), pp. 147-148.

[7]

126

(Dijkstra, 1968b) Dijkstra, E. W., 'A Reply by E. W. Dijkstra.' (Reply

to letter by J. R. Rice) Comm. ACM 11, 8 (Aug., 1968), pp. 538

and 541. [7, 94]

(Dritz, 1969) Drltz, K. , 'User's Guide to the PL/I Text Editor and

Syntax Processor.' Applied Math. Div., Argonne National Laboratory,

Argonne, Illinois, April, 1969 (unpublished). [81]

(Engelbart, 1968) Engelbart, Douglass C , and William K. English, 'A

Research Center for Augmenting Human Intellect.' AFIPS Proc. V. 33

pt. 1 (FJCC), 1968, pp. 395-410. [9, 89]

(Engelbart, 1971) Engelbart, D. C , Stanford Research Institute, Menlo

Park, Calif, private communication. [42, 95]

(George, 1967) George, J. E., The SPIRES Scope Demonstration System.

Stanford Linear Accelerator Center, CGTM 33, Nov., 1967. [8]

(George, 1968) George, J. E., Calgen - An Interactive Picture Calculus

Generation System. Computer Science Department, Stanford Univ.,

CS 114, 1968. [8, 46]

(Gladwin, 1970) Gladwin, R., 'The Utilization of Graphic Display Units

as the Main Form of Computer Input.' Computer Graphics 70 Inter

national Symposium, April, 1970, (paper not in proceedings; author

is with Kay and Co., England). [45]

(Hansen, 1969) Hansen, W. J., 'Compact List Representation: Definition,

Garbage Collection, and System Implementation.' Comm. ACM 12, 9

(Sept., 1969), pp. 499-507. [58]

127

(Hansen, 1970) Hansen, W. J., 'Graphic Editing of Structured Text.'

Proceedings of Computer Graphics 1970 International Symposium,

Brunei University, Uxbridge, Middlesex, England, V. 3, Section 7,

April, 1970. [vi]

(IBM, 1968) IBM Corporation, Graphic Subroutine Package (GSP). Form

No. C27-5932, Programming Publications, Kingston, New York, 1958.

[13]

(IBMUK, 1968) IBM United Kingdom Laboratories, Ltd., PL/I Reference

Manual. Form No. C28-8201, Programming Publications, Hursley Park,

Winchester, Hampshire, England, 1958. [13]

(Joseph, 1969) Joseph, A. F. and R. L. Logan, 'RESCUE, A Time-Sharing

System.' Applied Math. Div., Argonne Nat'l Lab., Argonne, 111.

1969 (unpublished). [81]

(Koch, 1969) Koch, K. and F, Schwarzenberger, A System for Syntax-

Controlled Editing of Formula Text. Presented at Newcastle Seminar

on Automated Publishing Systems, Newcastle, England, Sept,, 1969.

[73]

(McCarthy, 1962) McCarthy, John, et al., LISP 1.5 Programmer's Manual.

The MIT Press, Cambridge, Mass., 1962. [6]

(McCarthy, 1963) McCarthy, John, 'Towards a Mathematical Science of

Computation.' In Information Processing 1962 (C. M. Popplewell,

Ed.) North-Holland Publ. Co., Amsterdam, 1963, pp. 21-28. [60]

(McCarthy, 1967) McCarthy, John, Dow Brian, Gary Feldman, and John

Allen, 'THOR - A Display Based Time Sharing System.' AFIPS Conf.

Proc. V. 30 (SJCC), 1967, pp. 623-633. [8]

128

(Miller, 1968) Miller, R. B., 'Response Times in Man-Computer Conversa

tional Transactions.' AFIPS Conf. Proc. V. 33 (FJCC), 1968,

Part 1, pp. 267-277. [42]

(Mitchell, 1970) Mitchell, James G., The Design and Construction of

Flexible and Efficient Interactive Programming Systems. Dept. of

Comp. Sci., Carnegie Mellon University, June, 1970. [42]

(Nelson, 1965) Nelson, T. H., 'A File Structure for the Complex, the

Changing, and the Indeterminate.' Proc. ACM 20th Natl. Conf.,

1965, pp. 84-100. [9]

(Reynolds, 1970) Reynolds, J. C , 'GEDANKEN - A Simple Typeless Lan

guage Based on the Principle of Completeness and the Reference

Concept.' Comm. ACM 13, 5 (May, 1970), pp. 308-319. [13]

(Rice, 1970) Rice, D. E., Computer-Assisted Text Manipulation. Division

of Applied Mathematics, Brown University, June, 1970. [8]

(Ridsdale, 1970) Ridsdale, B., 'The Visual Display Unit for Data Collec

tion and Retrieval.' Proceedings of Computer Graphics 70 Interna

tional Symposium, Brunei University, Uxbridge, Middlesex, England,

V. 3, Section 2, April, 1970. [45]

(Schorre, 1964) Schorre, D. V., 'META-II: A syntax oriented compiler

writing language.' Proc. ACM 19th Natl. Conf., 1964, p. D1.3. [68]

(Smith, 1969) Smith, L. B., The Use of Man-Machine Interaction in Data-

Fitting Problems. SLAC Report No. 96, Stanford Linear Accelerator

Center, Stanford, California, March, 1969. [42, 46]

129

(Stanford, 1968) Stanford University Computing Center, 'Wylbur Refer

ence Manual.' Appendix E of Campus Facility Users Manual. Febru

ary, 1968. [8]

(Thompson, 1968) Thompson, K., QED Text Editor. Bell Telephone Labora

tories, Murray Hill, New Jersey, March, 1958 (unpublished). [8]

(Williams, 1970) Williams, R,, 'On the Application of Graph Theory to

Computer Data Structures,' Proceedings of Computer Graphics 70

International Symposium, Brunei University, Uxbridge, Middlesex,

England, V, 2, Section 3, April, 1970. [5]

(Wirth, 1971) Wirth N,, 'Program Development by Stepwise Refinement.'

Comm, ACM 14, 4 (April, 1971), pp, 221-227. [6]

130

